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Abstract

Context Roads are a widespread feature of land-

scapes worldwide, and road traffic sound potentially

makes nearby habitat unsuitable for acoustically

communicating organisms. It is important to under-

stand the influence of roads at the soundscape level to

mitigate negative impacts of road sound on individual

species as well as subsequent effects on the surround-

ing landscape.

Objectives We seek to characterize the relationship

between anthropogenic and biological sounds in

western New York and assess the extent to which

available traffic data explains variability in anthro-

pogenic noise.

Methods Recordings were obtained in the spring of

2016 at 18 sites throughout western New York. We used

the Welch Power Spectral Density (PSD) at low

frequencies (0.5–2 kHz) to represent anthropogenic noise

and PSD values at higher frequencies (2–11 kHz) to

represent biological sound. Relationships were modeled

using a novel two-stage hierarchical Bayesian model

utilizing beta regression and basis splines.

Results Model results and map predictions illustrate

that anthropogenic noise and biological sound have an

inverse relationship, and anthropogenic noise is

greatest in close proximity to high traffic volume

roads. The predictions have large uncertainty, result-

ing from the temporal coarseness of public road data

used as a proxy for traffic sound.

Conclusions Results suggest that finer temporal

resolution traffic sound data, such as crowd-sourced

time-indexed traffic data from geographic positioning

systems, might better account for observed temporal

changes in the soundscape. The use of such data, in

combination with the proposed modeling framework,

could have important implications for the develop-

ment of sound management policies.

Keywords Bayesian � Bioacoustics � Ecoacoustics �
Road effect � Soundscape ecology � Anthropogenic
noise

Introduction

Roads are a widespread feature of most landscapes

worldwide, with road networks growing dramatically

in the past 100 years. In the United States alone, there
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are over 6.3 million kilometers of public roads, most of

those (80%) found in rural areas (Forman et al. 2003).

Nowhere in the United States is very far from a road,

with the farthest straight line distance from a road in

the lower 48 states being a spot in Wyoming 21 miles

from the nearest road (Project Remote 2019). Since

1970, the traffic on US roads has at least tripled to

almost 5 trillion vehicle kilometers traveled per year

(Barber et al. 2010). Habitat fragmentation caused by

roads is detrimental to wildlife due to direct mortality

via wildlife-vehicle collisions, exposure to pollutants,

and exposure to sound from road traffic (Parris and

Schneider 2008; Barber et al. 2011; McClure et al.

2013; Snow et al. 2018). Thus, while roads alter

habitats and landscapes structurally, impacts of roads

on animal diversity and abundance can also be

impacted by altered acoustic environments (Katti

and Warren 2004; McClure et al. 2013).

Acoustic space, or the soundscape, is an essential

resource for both terrestrial and marine animals

(Pijanowski et al. 2011a; Farina 2018). Animals

utilize the auditory spectrum for a variety of functions,

including reproduction (McGregor 2005), predation

and to warn of danger (Marler and Slabbekoorn 2003;

Templeton 2006; Ridley et al. 2007; Sloan and Hare

2008), and to find food (Knudsen and Konishi 1979;

Rice 1982; Neuweiler 1989). The sounds organisms

produce are collectively called biological sound,

which combine together with abiotic sounds from

the earth, like wind and rushing water, and human-

produced sounds (anthropogenic noise) to form the

soundscape (Pijanowski et al. 2011a). Road sound

may be the most pervasive form of anthropogenic

noise impacting natural habitats and contributes sound

with particular characteristics to the soundscapes of

those habitats. Sound from a road is a linear rather than

a point source (Katti and Warren 2004), the sound

from traffic tends to be low frequency (typically below

2 kHz) and high amplitude, and the timing of road

sound in some places can vary greatly over time (e.g.,

rush hour peaks) and depend on traffic load (Slabbe-

koorn and Ripmeester 2008).

Traffic sound and other sources of anthropogenic

noise have created soundscapes with novel acoustic

characteristics in which acoustically communicating

animals send and receive signals. High amounts of

anthropogenic noise reduce the perception of biolog-

ically important sound (Barber et al. 2010) and are

thought to have negative effects on both cognitive

processes (Potvin 2017) as well as behavior (Brumm

and Slabbekoorn 2005). Traffic sound often masks

auditory signals, limiting or preventing senders and

receivers from communicating effectively, a phe-

nomenon that is well-documented (Brumm and

Slabbekoorn 2005; Patricelli and Blickley 2006),

particularly for birds and frogs. Traffic sound was

shown to cause physiological stress and impair

breeding behavior in multiple frog populations

throughout the world (Tennessen et al. 2014), and

similar effects have been demonstrated in birds

(Warren et al. 2006; Ortega 2012). Some bird species

are able to respond to anthropogenic noise by adapting

characteristics of their song to overcome masking. A

study on Song Sparrows (Melospiza melodia), found a

positive correlation between the minimum frequency

of a male’s song and the amplitude of low-frequency

background noise in a range of urban environments

(Wood and Yezerinac 2006), suggesting the organ-

isms are attempting to adapt to increased low

frequency sound by changing the pitch of their songs

to overcome masking. However, responses to anthro-

pogenic noise are species specific, and not all species

are able to change signal frequency or amplitude in a

short term response to increased sound in the envi-

ronment (Brackenbury 1978; Oberweger and Goller

2001; Patricelli and Blickley 2006). Further, even

organisms that are able to adapt their signals may

suffer from reduced fitness (Phillips and Derryberry

2018), suggesting anthropogenic noise can have

negative effects even on the species that change their

signals in response to increasing sound (Patricelli and

Blickley 2006). An alternative response to anthro-

pogenic noise is for species to avoid habitats where it

impacts the soundscapes, a conclusion drawn from

tests of the ‘‘phantom road’’ effect (McClure et al.

2013) and observations of changes in species abun-

dances near roads (Fahrig and Rytwinski 2009).

Without proper management of anthropogenic

noise, the negative impacts could cause changes in

species composition with potentially far reaching

effects on the ecosystem. Thus, it is necessary to

analyze the relationship between biological sound and

anthropogenic noise and understand how it changes

across temporal and spatial gradients in order to

accurately predict how anthropogenic noise will

influence the species comprising the biological sound.

More specifically, the identification of anthropogenic

noise ‘‘hot spots’’ in space and time will allow natural
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resource managers and others to pinpoint the times and

locations in which human sound should be mitigated

to maintain the integrity of local ecosystems (Ortega

2012). A potential first step in addressing these

complex problems is developing a model that quan-

tifies the relationship between biological sound and

prominent sources of anthropogenic noise, such as

road sound.

Ecoacoustics researchers (Sueur et al. 2008; Farina

and Gage 2017) have developed a number of acoustic

indices, such as the Acoustic Complexity Index (ACI)

(Pieretti et al. 2011), Acoustic Diversity Index (ADI)

(Villanueva-Rivera et al. 2011), Bioacoustic Index

(BI) (Boelman et al. 2007), and Normalized Differ-

ence Soundscape Index (NDSI) (Kasten et al. 2012) to

quantify soundscapes and understand how biological

sound relates to anthropogenic noise. NDSI was

developed to compare the relative amounts of anthro-

pogenic noise and biological sound within an envi-

ronment (Kasten et al. 2012) and has been shown to

correlate well with landscape characteristics despite

its relative simplicity (Fuller et al. 2015), and is thus a

reasonable measure to further characterize the rela-

tionship between anthropogenic noise and biological

sound across different spatio-temporal gradients. The

NDSI is built using the Welch power spectral density

(PSD) (Welch 1967) for 1 kHz frequency bins within

the recording.

The NDSI and PSD are useful tools for tracking

spatio-temporal changes in soundscapes (Pijanowski

et al. 2011a; Mullet et al. 2016). However, sound-

scape data present some unique challenges that

potentially cannot be addressed using these indices

and simple statistical models. For example, the data

used in this study are multivariate (partitioned into

frequencies associated with anthropogenic and natural

sounds), compositional (frequency ranges sum to total

sound at a given location and time), non-Gaussian, and

are highly correlated across time. Soundscape data are

also typically sparsely sampled in space, highly

correlated across space, and often comprise high-

dimensional continuous time series for short time

intervals with large intervening time gaps. While

contemporary statistical literature offers modeling

theory for such data complexities (Clark 2007; Hobbs

and Hooten 2015), applied methodology and software

are not yet available in the field of ecoacoustics.

Application of statistical models that can address these

complexities can lead to improved inference and

prediction on important soundscape variables across

space and time, quantified by statistically valid

estimates of uncertainty.

In this study, we propose a hierarchical Bayesian

modeling approach to assess the spatial distribution of

biological sound and anthropogenic noise in western

New York soundscapes in relation to roads and traffic

density. Hierarchical Bayesian models (HBMs) offer

an intuitive framework to decompose complex eco-

logical problems into logical parts (data, process, and

parameters) (Berliner 1996; Cressie et al. 2009). The

framework is ideal for drawing inference about

soundscapes as it can accommodate high-dimensional,

multivariate, compositional data with time and space

dependence. Specifically, our objectives are to: (1)

characterize the functional relationship between

anthropogenic noise and biological sound; (2) assess

the extent to which available traffic data explains

variability in anthropogenic noise; (3) develop a

methodology to deliver statistically valid maps of

anthropogenic noise and biological sound that reflect

the relationship identified in Objective 1 with accom-

panying uncertainty quantification.

Materials and methods

Study location and data collection

Recording sites were located in nine forest patches in

western New York. The forest plots included two

arboretums managed by colleges (State University of

New York at Geneseo and Monroe Community

College), two forest plots owned and managed by

the Genesee Valley Conservancy, two forest plots in

the town of Brighton, and one forest plot each in the

towns of Avon, Conesus, and Rush. Forest plot

locations were chosen along an urban–rural gradient

to provide soundscapes with varying exposure to

levels of anthropogenic noise.

We obtained recordings at two locations within

each of the nine forest plots, resulting in 18 total

recording sites. The two locations within each site

were chosen to provide recordings of soundscapes at

varying distances to the nearest major road. FromMay

to June 2016 we obtained three 30 min recordings at

each recording site in the morning (between 6 and 8

am), afternoon (between 12 and 2 pm), and evening

(between 6 and 9 pm), resulting in a total of 54 30 min
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recordings. All recordings were taken on weekdays

and specific recording times within the specified

sampling periods were chosen randomly. We recorded

in stereo at a sampling rate of 44.1 kHz using a Song

Meter SM4 from Wildlife Acoustics (Wildlife Acous-

tics 2012) mounted on a tripod 1 m above the ground

using the built-in omnidirectional microphones with a

sensitivity of �36� 4dB. We discarded the last

minute of each 30 min recording as a result of

extraneous sound. Each 29 min recording was broken

up into 29 consecutive 1-min sound bites, resulting in

a total of n ¼ 18 sites � 3 times per day �
29 sound bites ¼ 1566 observations. We recorded

on days with similar weather conditions during which

birds are known to communicate (i.e., no rain, minimal

wind) to minimize any influence of weather on the

observed soundscape patterns.

We used basic scatter plots and standard regression

functions in R (Bates et al. 2015) to assess the

influence of the day of the recording and the time of

a morning recording from sunrise on the relationship

between biological sound and anthropogenic noise.

We did not find large amounts of variability in this

relationship across the differing factor levels, and so

we do not include them as covariates in the subsequent

modeling framework.

Soundscape metrics

Recordings were manually analyzed using a sampling

scheme for rapid soundscape analysis (Bobryk et al.

2016) to determine the most common acoustically

communicating organisms in the soundscapes. The

analysis revealed the soundscapes contained varying

amounts of anthropogenic noise depending on the site

and were dominated by avian species, the most

common species including American Robin (Turdus

migratorius), Cedar Waxwing (Bombycilla cedro-

rum), Yellow Warbler (Setophaga petechia), Red-

eyed vireo (Vireo olivaceus), and Eastern Wood-

Pewee (Contopus virens).

Each 1 min soundscape recording was summarized

using the PSD as computed by Welch (Welch 1967).

The PSD represents the amount of soundscape power

within each frequency band in units of watts/kHz

(Fig. 1). Each PSD value was vector normalized to

account for differences in recorder setting (i.e., system

sensitivity, frequency response) and to facilitate

comparison of PSD values obtained at different sites

(Joo et al. 2011). Here we chose to use the Welch

spectrum to compute the PSD in units of watts/kHz as

opposed to computing the PSD in units of dB re

20 lPa2Hz�1 (Merchant et al. 2015) as this method

has been employed in numerous terrestrial soundscape

studies to create indices of the amount of biological

sounds, anthropogenic noise, and a ratio between the

two types of sound (Joo et al. 2011; Kasten et al.

2012; Fuller et al. 2015; Farina and Gage 2017;

Buxton et al. 2018a, b; Rajan et al. 2019). We

computed the PSD for each 1.5 kHz frequency band

between 0.5 and 11 kHz (i.e., a total of seven 1.5 kHz

bands), where each value ranged from 0 (no sound) to

1 (filled with sound).

Anthropogenic noise commonly occurs in the

frequency ranges between 0.5 and 2 kHz (Napoletano

2004; Joo et al. 2011; Kasten et al. 2012). Thus, we

used the normalized PSD from the 0.5 to 2 kHz band to

represent the amount of anthropogenic noise in each

recording following the technique of Kasten et al.

(2012) and the sum of the 1.5 kHz width PSD values

from 2 to 11 kHz to represent the amount of biological

sound in each recording. We assume all sound below

the frequency of 2 kHz is anthropogenic noise. Such an

assumption is generally not safe in western New York

because several species communicate in these fre-

quency ranges (e.g., Red Fox (Vulpes vulpes), North-

ern Flicker (Colaptes auratus), American Crow

(Corvus brachyrhynchos), Common Raven (Corvus

corax)). However, the manual analysis found only one

common species (American Crow) communicating in

this frequency range in our data set, suggesting that

using the PSD from the 0.5 to 2 kHz band will be a

fairly reasonable approximation for the total amount

of anthropogenic noise in the soundscapes recorded in

this study. The anthropogenic and biological sound

values were scaled to the range of 0–1 watts/kHz by

dividing by the total number of frequency bins

involved in their computation (1 and 6, respectively).

We used the soundecology (Villanueva-Rivera

and Pijanowski 2018), tuneR (Ligges et al. 2018),

and seewave (Sueur et al. 2008) packages within the

R Statistical Software (R Core Team 2019) environ-

ment to compute these measures. PSD values were

averaged over the left and right channels to obtain a

single value of anthropogenic noise and biological

sound for each recording.
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To further assess our frequency range assumptions

for biological and anthropogenic sounds, a subset of

recordings was analyzed to determine the proportion

of biological sound in the 0.5–2 kHz band. Two one

minute recordings for each combination of site and

time period were analyzed (108 one minute record-

ings). The analysis revealed biological sounds were

scarcely present in the 0.5–2 kHz band, with a median

of 0.9 s of each minute containing audible biological

sounds (First Quartile: 0 s, Third Quartile: 3.48 s), and

a total of 50 recordings containing no audible biolog-

ical sounds in the 0.5–2 kHz band (Fig. 2). The

biological sounds within the 0.5–2 kHz range also

tended to be of low amplitude compared to the

anthropogenic noise in the same recording, and thus

their impact on the PSD would be minimal. Anthro-

pogenic noise was sometimes present above the 2 kHz

region, especially in the 2–3 kHz region. Exploratory

data analysis revealed this was in the soundscapes

primarily dominated with anthropogenic noise where

the anthropogenic noise PSD value was[0.95. Thus,

we acknowledge the values for biological sound at

high levels of anthropogenic noise may be overesti-

mated. However, this would not change our results to a

Fig. 1 Computation of biological sound (yijk) and anthropogenic noise (aijk) values using the power spectral density for a single

recording minute (i) at a single location (j) at a single time of day (k)

Fig. 2 Spectrogram of an example sound recording. The horizontal line represents the cutoff value used to separate anthropogenic and

biological sounds
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high degree, as the biological values at high levels of

anthropogenic noise are already quite low (see data

points in Fig. 5), and so we believe this assumption is

valid for these specific soundscapes.

Road influence

To assess the influence of roads and traffic sound on

the soundscapes we used public data from the New

York State GIS Clearinghouse (NYS ITS GIS Pro-

gram Office 2019) containing road locations and

average speeds. A second data set was acquired from

the New York State Department of Transportation

(NYS Department of Transportation 2018) containing

the average annual daily traffic (AADT) and an

estimate of the percent of trucks on Federal and State

highways, and on county and town roads. The roads

from these data sets are plotted in Fig. 3, clearly

showing the ubiquitousness of roads throughout

western New York. We created a road covariate to

quantify the road influence on the soundscape at any

given location. This road covariate (RC) took into

account 5 factors: (1) average speed; (2) distance of

recording site to road; (3) AADT; (4) Percent of

trucks; (5) shape of the road. To quantify the shape of

the road, we broke each road into 10� 10m pixels,

obtained the corresponding AADT, speed, and percent

of truck values with each road pixel, and computed the

distance of each road pixel within 600 m of a given

recording site. The 600m boundary is an estimate of

how far anthropogenic noise will travel through a

forested landscape (Forman and Deblinger 2000;

MacLaren et al. 2018).

We predicted average speed, AADT, and percent of

trucks to have a positive relationship with anthro-

pogenic noise and distance to have a negative

relationship with anthropogenic noise. Thus, the road

covariate is computed as follows for a given 10� 10m

pixel i:

RCi ¼ AADTþ speedþ truck� distance

The variables are scaled to provide approximately

equal weight to all variables. The complete road

covariate for a given recording site is then computed

by summing the RCi for all locations iwithin 600 m of

the given recording site, thus accounting for the shape

of the roads near a given recording site. This road

covariate is visualized in the study region in Fig. 3,

indicating the covariate is only high near roads, and

highest near intersections in the Rochester area.

Quantification of roads was limited to the roads

assessed by the New York State Department of

Transportation. These data come primarily from

12,000 annual short traffic counts of 2–7 days of

duration.More counts took place in urban areas than in

rural and agricultural areas (NYS Department of

Transportation 2018), which could potentially lead to

the road covariate being an underestimate in rural and

agricultural regions.

Fig. 3 Distribution of roads in NewYork State. a Public road data is displayed across all of NYS. b The road covariate is computed at a

30� 30 m resolution for the boxed area
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Model

We seek a model that: (1) provides parameter

estimates and associated uncertainty regarding the

relationship between biological sound and anthro-

pogenic noise; (2) assesses the amount of anthro-

pogenic noise variance explained by the road

covariate; (3) enables biological sound and anthro-

pogenic noise prediction with associated uncertainty.

Importantly, we take the view that biological sound is

conditional on anthropogenic noise, and both variables

are observed with error. We considered three hierar-

chical Bayesian models of increasing complexity,

henceforth referred to asModel 1, Model 2, andModel

3. Each model consisted of two stages. Stage 1 models

anthropogenic noise as a function of the road covari-

ate. Stage 2 models biological sound conditional on

Stage 1 such that uncertainty in observed anthro-

pogenic noise is appropriately propagated through the

two stages for inferences and subsequent prediction

(Lunn et al. 2013).

Consider the PSD value for anthropogenic noise

ai;j;k and the road covariate xj, where i ¼ 1; 2; . . .; 29 is

the minute of the continuous 29-min recording, j ¼
1; 2; . . .; 18 indexes recording site, and k ¼ 1; 2; 3

indexes time of day. All first stage models use beta

regression to account for the bounded support of ai;j;k
on [0, 1] and follow the mean and precision param-

eterization detailed in Ferrari and Cribari-Neto (2004).

Exploratory data analysis revealed the relationship

between anthropogenic noise and the road covariate

was non-linear and residuals (i.e., after accounting for

the road covariate) were serially correlated with non-

constant variance. These features were accommodated

using cubic b-splines to obtain a smooth curve over the

anthropogenic noise and road covariate functional

relationship, and a temporally structured random

effect to acknowledge the correlation among the

1-min anthropogenic noise sound bites over each 29

min recording. More specifically, the random effect

followed a multivariate normal distribution with mean

0 and an AR(1) covariance matrix.

Inferences proceeded by assigning model parame-

ters non-informative prior distributions then a Markov

Chain Monte Carlo (MCMC) algorithm sampled from

posterior distributions. The full hierarchical model for

Model 1, including prior specifications, is detailed

below (½a j b� is the probability distribution of a con-

ditional on b) :

Stage 1:

½ba; r2a; qa;/a;wi;j;k j xj; ai;j;k� /
Y29

i¼1

Y18

j¼1

Y3

k¼1

betaðai;j;k j gðba; xj;wi;j;kÞ/a;

ð1� gðba; xj;wi;j;kÞÞ/aÞ�
multivariate normalðwi;j;k j 0; r2aRðqaÞÞ�
inverse gammað/a j 2; 20000Þ�
inverse gammaðr2a j 2; 5Þ�
Y5

l¼1

normalðba;l j 0; 10000Þ�

uniformðqa j 0:1; 1Þ

where gðba; xj;wi;j;kÞ ¼ inverse logitðZxjba þ wi;j;kÞ,
Zxj is the row in the b-spline design matrix for the

specific value of the road covariate xj, wi;j;k is the

random effect with mean 0 and an AR(1) covariance

structure with variance r2a, correlation qa, and n� n

matrix R (with block diagonal structure where each

block is the covariance among 29 consecutive sound

bites), ba are spline regression coefficients, and /a is

the precision.

Point and interval estimates for parameters and

fitted values were obtained from the joint posterior

distribution (Gelman et al. 2004). Recall, the central

role of the Stage 1 model is to explore the relationship

between the road covariate and a, and propagate the

uncertainty in a to the Stage 2 model for the biological

sound. This was accomplished by obtaining M post

burn-in samples of the fitted values from Stage 1, i.e.,

M n� 1 vectors of âðmÞ ¼ ðâðmÞ1 ; âðmÞ2 ; âðmÞ3 ; . . .; âðmÞn Þ>
where m ¼ 1; . . .;M, and by using them as the

covariate in a similar mixed effect beta regression

model for the biological sound, yi;j;k. The overall

structure of Stage 2 is exactly the same as Stage 1, with

the exception that each MCMC iteration m fits the

biological sound to a different sample âðmÞ. Stage 2

takes the following form, where all parameters are

analogous to Stage 1:
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Stage 2:

½by; r2y ; qy;/y; vi;j;k j â
ðmÞ
i;j;k; yi;j;k� /

Y29

i¼1

Y18

j¼1

Y3

k¼1

betaðyi;j;k j gðby; â
ðmÞ
i;j;k; vi;j;kÞ/y;

ð1� gðby; â
ðmÞ
i;j;k; vi;j;kÞÞ/Þ�

multivariate normalðvi;j;k j 0; r2yRðqyÞÞ�
inverse gammað/y j 2; 2000Þ�
inverse gammaðr2y j 2; 2Þ�
Y8

l¼1

normalðby;l j 0; 10000Þ�

uniformðqy j 0:1; 1Þ:

While Model 1 does accommodate the serial correla-

tion among the 1-min sound bites, it does not

acknowledge within day (i.e., morning, afternoon,

and evening) repeated measures aspect of the sam-

pling design. This within day covariance is explicitly

taken into account in Model 2 by replacing the scalar

variance parameters, r2a and r2y , with a 3� 3 covari-

ance matrix, ka and ky, whose diagonal elements

represent the random effect variance for the respective

time period (morning, afternoon, evening) and whose

off-diagonal elements represent the covariance

between recordings in different time periods. Unlike

in Model 1, this structure allows us to make inferences

about similarities or differences between the sound-

scape recordings across the three time periods. The k’s

are modeled with a non-informative inverse-Wishart

prior with degrees of freedom 3 and a diagonal scale

matrix with all diagonal elements equal to 0.1. We use

Kronecker products to obtain the desired structure of

the covariance matrix, and apply this structure in both

Stages 1 and 2.

After examining output from Models 1 and 2,

diagnostic plots showed observed versus fitted

values exhibited heteroskedasticity and associate

credible intervals were not appropriately capturing

the variability. This non-constant variance was

directly addressed in Model 3. For Stage 1, the

heteroskedasticity resulted from the relationship

between anthropogenic noise and the road covariate.

This was remedied by fitting two separate precision

parameters /a;l and /a;u the expression of which was

controlled by an indicator function such that /a;l is the

precision at values of the road covariate less than 2,

while /a;u is the precision at values of the road

covariate greater than 2. While we could have

formally estimated the indicator function break point

parameter, it was clear from diagnostic plots that a

road covariate value of 2 was adequate, see, e.g.,

Fig. 4. Both /a;l and /a;u are modeled with non-

informative inverse gamma priors. In Stage 2, we

model the precision parameter /y as a function of

anthropogenic noise, specifically taking the form

/y;1 þ /2expðâi;j;kÞ. We modeled /y;1 and /y;2 using

vague uniform priors from 0 to 10,000.

Prediction

We seek to develop statistically valid maps of

anthropogenic noise and biological sound that reflect

the relationships obtained from the three models with

associated uncertainty quantification. We computed

the road covariate as described previously across a

square region in western New York (Fig. 3). The

posterior predictive distribution for anthropogenic

noise is

½a� j a; x� ¼
Z 1

�1
½a�jha�½haja�dha ð1Þ

where a� is a vector of anthropogenic noise values at
new locations, x is a vector of road covariate values at

new locations, and ha is a vector of Stage 1 parameters.

Similarly, the posterior predictive distribution for

biological sound is

½y�jy; Â� ¼
Z 1

�1
½y�jhy�½hyjy�dhy ð2Þ

where y is a vector of biological sound values at new

locations, Â is an n� �M matrix, where n� is the

number of new locations to predict, and M is the

number of post-burn MCMC iterations of the fitted

values of Stage 1, and hy is a vector of Stage 2

parameters.

The integrals in (1) and (2) are approximated using

MCMC based composition sampling (see, e.g., Ban-

erjee et al. 2014). Posterior predictive samples from a�

and y� were used to compute anthropogenic noise and

biological sound medians and associated credible

intervals.
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Fig. 4 Stage 1 model fits. 95% credible intervals are displayed as gray lines in (a), (c), and (e). Posterior medians of model fitted values

are displayed in black and 95% credible intervals are displayed as the blue shaded regions in (b), (d), and (f)
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Convergence diagnostics and model validation

Diagnostics were performed to ensure convergence of

the MCMC chains. We used a combination of visual

assessment of trace plots and an alternative version of

the Gelman-Rubin diagnostic that does not assume

normality of the correction factor (Brooks and Gelman

1998).

True assessment of the predictive ability of a model

requires some form of hold out data that are not used

for fitting the model. To accomplish this, we per-

formed a k-fold cross validation technique with k ¼ 6

(Vehtari and Lampinen 2002). This technique requires

fitting the model k times, where each time the model is

fit on n/k data points, where n is the length of the data

set. Each run of the model fits on a different portion of

the data, and predicts the remaining n� n=k hold out

values. Since these data are not used in the model

fitting process, they represent true draws from the

posterior predictive distribution that can be compared

with the actual values of the data to assess the

predictive capabilities of the model. We used the

Continuous Rank Probability Score (Gneiting and

Raftery 2007) and the Expected Log Pointwise

Predictive Density (Vehtari et al. 2017) to compare

the predictive capabilities of the model. Further, we

computed the 95% coverage interval for each of the

models, which gives us the percentage of the actual

data values that fall within the 95% credible interval of

the model.

Software implementation

MCMC samplers were written in C?? using an

Adaptive-Metropolis-within-Gibbs algorithm (Roberts

and Rosenthal 2009). Computationally expensive

matrix operations were coded using the Intel Math

Kernel Library (MKL) BLAS and LAPACK routines.

Prediction and model validation were performed in

both C?? and R utilizing the scoringRules

package to compute the CRPS (Jordan et al. 2018). All

subsequent analysis was performed in R (R Core Team

2019). Data and code are available on GitHub (https://

github.com/doserjef/DHF20).

Results

Figure 4 shows the relationship between the road

covariate and anthropogenic noise depends upon the

value of the road covariate. When the road covariate is

high, there are large amounts of anthropogenic noise,

aligning with intuition and previous research suggest-

ing that anthropogenic noise is higher in more urban

areas (Pijanowski et al. 2011a, b). However, at low

values of the road covariate we obtain essentially no

information about anthropogenic noise in the sound-

scape. Candidate model parameter estimates are given

in Table 1. Convergence diagnostics suggested rapid

convergence for all model parameters with the

exception of a few spline coefficients, b’s, in Stage

1. Such lack of convergence is common in spline-

based regression components, especially in the pres-

ence of an additive structured random effect (Wood

and Yezerinac 2006; Hanks et al. 2015). This lack of

convergence is of no concern because we are not

interested in interpreting the individual spline basis

function coefficients—we simply look to Stage 1 to

adequately capture the uncertainty in observed anthro-

pogenic noise, and characterize the relationship

between anthropogenic noise and the road covariate.

Model fits are shown in Fig. 5 along with the

estimated relationship between biological sound and

anthropogenic noise. Generally, as anthropogenic

noise increases, biological sound decreases, aligning

with previous research (Pijanowski et al. 2011b).

Model 3 performed best according to all model

validation criteria; however, all models performed

very well. Candidate model parameter estimates are

given in Table 2. All Stage 2 model parameters

showed strong convergence.

To ease interpretation, covariance matrix estimates

are often best expressed as correlations. Converting

each MCMC sample from the k’s posterior to a

correlation provides access to the corresponding

correlation matrix posterior, which is summarized in

Tables 3 and 4 for Stages 1 and 2, respectively.

Because inference is primarily focused on estimat-

ing biological sound given anthropogenic noise in the

soundscapes, we perform model comparison only for

Stage 2 models. A sixfold-cross validation was used to

compare candidate models’ out-of-sample prediction

using the CRPS and ELPD. High values of the ELPD

and low values of the CRPS suggest a better model fit.

We also report the percentage of points covered by the

123

Landscape Ecol

https://github.com/doserjef/DHF20
https://github.com/doserjef/DHF20


95% credible intervals of the predicted biological

sound versus anthropogenic noise relationship, which

should ideally cover 95% of the data points (Table 5).

The models yield anthropogenic noise and biolog-

ical sound prediction at the 29 min observation

resolution for three times of the day. Such fine

temporal resolution is likely not that useful from an

assessment or management perspective. Hence, we

summed each 29 min biological sound and anthro-

pogenic noise posterior predictive sample, resulting in

a posterior predictive distribution for the total anthro-

pogenic noise and biological sound at each pixel

across the study area for morning, afternoon, and

evening. The median and range between the upper and

lower 95% credible interval bounds for each pixel-

level predictive distribution were mapped. Very little

differences were detected among the models and

between predictions at the morning, afternoon, and

evening, and thus we only present posterior predictive

maps for the afternoon soundscapes for Model 3 in

Fig. 6.

Discussion

There is recent widespread recognition that anthro-

pogenic traffic noise alters the acoustic habitat for

many animal species (Barber et al. 2010, 2011; Bux-

ton et al. 2017), and influences biodiversity within

reach of that sound (Katti and Warren 2004; McClure

et al. 2013). Acoustic soundscape recordings are now

commonly used in the field of ecoacoustics to monitor

natural soundscapes impacted by anthropogenic noise

(Pijanowski et al. 2011b; Farina 2018). An important

and complex challenge in ecoacoustics is to determine

the impacts of road noise on biodiversity. As a

potential first step to address this problem, we

proposed a novel hierarchical Bayesian model to

explore the relationships between public road data,

anthropogenic noise, and biological sounds. Specifi-

cally, we developed three two-stage mixed effects beta

regression models to assess the degree to which public

traffic data explains variability in anthropogenic noise

and to characterize the relationship between biological

sound and anthropogenic noise in western New York

soundscapes. The models were compared using infer-

ence delivered and out-of-sampled prediction. Models

were then applied to provide anthropogenic noise and

Table 1 Stage 1 posterior parameter medians and 95% credible intervals, 50% (2.5%, 97.5%)

Parameter Model 1 Model 2 Model 3

ba;0 1.12 (1.10, 1.15) 0.64 (0.60, 0.65) 1.59 (1.57, 1.61)

ba;1 3.71 (3.68, 3.74) 1.01 (0.93, 1.06) 2.46 (2.36, 2.54)

ba;2 3.84 (3.59, 4.05) 5.38 (5.00, 5.86) 7.40 (7.00, 7.59)

ba;3 6.83 (6.60, 7.41) 4.81 (4.45, 5.18) 6.81 (6.06, 7.45)

ba;4 4.37 (4.19, 5.28) 4.12 (3.90, 4.46) 6.44 (6.23, 6.63)

/a 232,161 (80,716, 878,895) 348,648 (105,344, 738,622) –

/a;l – – 92,623 (37,579, 228,416)

/a;u – – 239,221 (68,653, 1976,045)

ka;ð1;1Þ – 2.85 (2.58, 3.21) 2.23 (2.10, 2.54)

ka;ð2;1Þ – 0.07 (-0.22, 0.36) 0.02 (-0.21, 0.25)

ka;ð3;1Þ – 0.62 (0.29, 0.95) 0.46 (0.21, 0.73)

ka;ð2;2Þ – 3.28 (2.96, 3.73) 2.63 (2.39, 2.92)

ka;ð3;2Þ – 0.11 (-0.22, 0.44) 0.06 (-0.19, 0.32)

ka;ð3;3Þ – 3.78 (3.39, 4.29) 3.01 (2.73, 3.36)

r2a 8.38 (7.04, 10.23) – –

qa 0.89 (0.87, 0.91) 0.92 (0.90, 0.94) 0.87 (0.85, 0.90)

Subscript in parentheses on ka indicate the row and column element in ka
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Fig. 5 Stage 2 model fits. 95% credible intervals are displayed as gray lines in (a), (c), and (e). Posterior medians of model fitted values

are displayed in black and 95% credible intervals are displayed as the blue shaded regions in (b), (d), and (f)
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biological sound predictive maps over a sample region

in western New York using public road data. The

predictive maps have large uncertainty in locations far

from roads, resulting from the temporal coarseness of

public road data used as a proxy for traffic noise. This

suggests a need for finer temporal resolution traffic

noise data. The use of such data, in combination with

the proposed modeling framework, could have impor-

tant implications for the development of soundscape

and sound management policies.

Road noise is one of the most ubiquitous sources of

anthropogenic noise (Barber et al. 2010; Project

Remote 2019). In Stage 1 of our proposed modeling

framework, we model the relationship between public

road traffic data and anthropogenic noise to determine

how well the public traffic data explains variability in

anthropogenic noise (Fig. 4). Model results ultimately

displayed the inability of the road covariate to explain

variability in anthropogenic noise at low values. The

large uncertainty in the relationship between anthro-

pogenic noise and the road covariate is also evident in

the predictions of anthropogenic noise given new

values of the road covariate, as the credible interval

widths are extremely large at areas where the road

covariate is low (Fig. 6). The large variation in the

anthropogenic noise values at low levels of the road

covariate could potentially be improved by incorpo-

rating important variables regarding the road surface

type that likely influence the propagation of road

sound throughout the environment, which were not

available in the data sets used in this study. However,

the data showed high variability in the anthropogenic

noise values within each site, suggesting it is more

likely that high variability in this relationship is a

result of individual effects that are not accounted for

by site level variables. These individual effects are

Table 2 Stage 2 posterior

parameter medians and 95%

credible intervals, 50%

(2.5%, 97.5%)

Subscript in parentheses on

ky indicate the row and

column element in ky

Parameter Model 1 Model 2 Model 3

by;0 �1.16 (�1.26, �1.09) �1.14 (�1.20, �1.11) �1.21 (�1.26, �1.06)

by;1 �1.08 (�1.16, �0.96) �1.01 (�1.06, �0.96) �1.07 (�1.18, �0.98)

by;2 �1.01 (�1.08, �0.95) �0.99 (�1.06, �0.91) �1.07 (�1.12, �0.98)

by;3 �1.75 (�1.78, �1.71) �1.71 (�1.76, �1.65) �1.74 (�1.78, �1.70)

by;4 �1.87 (�1.91, �1.80) �1.84 (�1.88, �1.78) �1.91 (�1.95, �1.85)

by;5 �2.99 (�3.03, �2.96) �2.98 (�3.02, �2.91) �3.00 (�3.04, �2.96)

by;6 �3.49 (�3.54, �3.43) �3.48 (�3.52, �3.43) �3.54 (�3.59, �3.48)

by;7 �5.04 (�5.09, �4.99) �5.06 (�5.11, �4.98) �5.03 (�5.10, �5.00)

/y 7487 (5658, 9606) 6919 (5526, 9085) –

/y;1 – – 128.68 (4.53, 542.99)

/y;2 – – 1343.38 (1072.11, 1596.93)

ky;ð1;1Þ – 0.21 (0.19, 0.23) 0.21 (0.19, 0.24)

ky;ð2;1Þ – �0.004 (�0.03, 0.02) �0.01 (�0.04, 0.02)

ky;ð3;1Þ – 0.05 (0.03, 0.08) 0.06 (0.03, 0.09)

ky;ð2;2Þ – 0.20 (0.18, 0.22) 0.20 (0.18, 0.23)

ky;ð3;2Þ – 0.007 (�0.02, 0.03) 0.02 (�0.02, 0.05)

ky;ð3;3Þ – 0.21 (0.19, 0.24) 0.21 (0.19, 0.24)

r2y 0.06 (0.05, 0.07) – –

qy 0.82 (0.78, 0.86) 0.74 (0.70, 0.79) 0.82 (0.76, 0.86)

Table 3 Model 3 Stage 1 random effect correlation matrix

posterior medians and 95% credible intervals, 50% (2.5%,

97.5%)

Morning Afternoon Evening

Morning – – –

Afternoon 0.01 (�0.08, 0.10) – –

Evening 0.18 (0.08, 0.28) 0.02 (�0.07, 0.11) –

Boldface indicates parameter values not containing 0 in the

associated 95% credible interval
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likely a result of large variations in the number/type of

automobiles on the road at any given minute of time.

We listened to all recordings, and confirmed road

sound was the most prominent source of anthro-

pogenic noise, further suggesting the high variation of

the relationship between the road covariate and the

human sound is a result of high temporal variation in

the number of cars on a given road, a phenomenon that

is well-described in literature on traffic sound model-

ing (Conesel et al. 2005; Can et al. 2008). The use of

models that incorporate the dynamic temporal changes

of road sound across time could help account for the

temporal changes in traffic and subsequent traffic

sound if traffic data are limited as in this study (Can

et al. 2008). Utilizing crowd-sourced traffic data from

traffic and navigation apps (i.e., Google Maps, Waze)

is an intriguing alternative that would enable more

time-specific measures of traffic and subsequently the

sound it produces. Such space-time data, in combina-

tion with the modeling frameworks proposed here,

could result in near real-time maps of anthropogenic

noise that could have important implications for the

development of sound management policies.

Using spatially or temporally structured random

effects in soundscape models can improve model

accuracy when the data are limited and the researcher

suspects there are individual effects causing variation

not explained by the data (Clark 2007). In this study,

the use of random effects allowed us to incorporate

temporal dependence between recordings, obtain

accurate model fits, and predict anthropogenic noise

and biological sound despite using a predictor (the

road covariate) that does not explain large amounts of

variation of anthropogenic noise.

Understanding the relationship between biological

sounds and anthropogenic noise is an important initial

step in determining the impact of anthropogenic noise

on biodiversity. In Stage 2 of our modeling frame-

work, we quantify the complex, non-linear relation-

ship between biological sound and anthropogenic

noise (Fig. 5). We modeled this relationship using

three candidate models, each increasing in complex-

ity. Table 5 shows that Model 3 has the highest ELPD,

the lowest CRPS values, and the most accurate 95%

coverage. This suggests that accounting for the

repeated measures across time of day in the sound-

scape recordings as well as the non-constant variance

in the data provides an improvement in the model.

Soundscapes are highly correlated across both

space and time (Pijanowski et al. 2011b; Mullet et al.

2016) and thus a modeling framework that quantifies

such correlations are important inferential tools. The

additional time of day correlation estimates in Models

2 and 3 provide inference on the relationship between

the soundscapes over the morning, afternoon, and

evening recordings. For Model 3, Stage 1 (Table 3),

we see the correlation between the random effects of

the afternoon recordings with both the random effects

of the morning and evening recordings are not

different from 0 (i.e., 0 is contained within the 95%

credible interval), whereas the correlation between

morning and evening random effects are small but

different from 0, with a posterior median of 0.18. This

suggests that variations in anthropogenic noise not

explained by the road covariate are similar in the

morning and evening recordings, although the corre-

lation coefficient of 0.18 suggests this is not a strong

relationship. For Model 3, Stage 2 (Table 4), we see

similar results in that the correlation between morning

Table 4 Model 3 Stage 2 random effect correlation matrix posterior medians and 95% credible intervals, 50% (2.5%, 97.5%).

Boldface indicates parameter values not containing 0 in the associated 95% credible interval

Morning Afternoon Evening

Morning – – –

Afternoon �0.06 (�0.20, 0.09) – –

Evening 0.27 (0.14, 0.45) 0.08 (�0.12, 0.22) –

Table 5 Comparison of ELPD, CRPS, and 95% Coverage

Intervals

Model 1 Model 2 Model 3

ELPD 730.5 728.17 733.17

CRPS 0.0098 0.0097 0.0097

95% Coverage 95.66 92.85 94.96
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and evening recordings is different from 0, with a

posterior median of 0.27, suggesting that variations in

biological sound not explained by anthropogenic noise

are more similar in the morning and the evening

recordings than they are between the afternoon

recordings and either the morning or evening record-

ings. This is likely a result of the dawn and dusk

choruses, which are captured by the morning and

evening recording time periods, respectively. Thus,

we see that Model 3 provides slight improvements in

terms of the model validation criteria, in addition to

providing insights into the temporal relationships

between biological sound and anthropogenic noise

that are not available from the more simple Model 1.

To illustrate how our modeling framework can be

used to predict anthropogenic and biological sounds

over larger spatial areas, we provide soundscape maps

of a sample region in western New York at a 250�
250 m resolution where we predict anthropogenic

noise and biological sound from public road data.

Visualization of the posterior median suggests that

biological sound is highest in areas farther away from

roads, while anthropogenic noise is high in regions of

more concentrated and highly used roads. This aligns

Fig. 6 Model 3 afternoon predictions of anthropogenic noise and biological sound over a sample region in western NewYork. Posterior

medians are shown in (a) and (c), while posterior 95% credible interval widths are shown in (b) and (d)
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with previous research and intuition, as the probability

of detection of avian species vocalizations is lower

closer to roads (Parris and Schneider 2008) and

anthropogenic noise increases with the degree of

urbanization (Pijanowski et al. 2011a). However, a

visualization of the 95% credible interval widths

shows that there are large amounts of uncertainty

associated with these estimates at areas with low

anthropogenic noise, largely a result of the inability of

anthropogenic noise to be accurately predicted at low

levels of the road covariate. Thus, inference drawn

from these maps is limited due to our lack of certainty.

Despite the fact that there is a clear negative

relationship between biological sound and anthro-

pogenic noise, we see that past a given distance from

the road the predictions of biological sound are all very

similar. In this study, we were solely interested in the

relationship between anthropogenic noise and biolog-

ical sound and the ability of public road data alone to

serve as a predictor. If more accurate predictions of

biological sound are desired, it will be important to

include covariates in the model that quantify the

landscape structures that determine the types of

organisms communicating in the soundscape (Pi-

janowski et al. 2011b; Farina and Gage 2017). One

example of successful soundscape maps of biological

sound and anthropogenic noise was shown in a study

of south-central Alaska from numerous landscape and

anthropogenic measures, such as distance to rivers,

distance to wetlands, aspect, and snowmobile activity

(Mullet et al. 2016). In the landscape we have mapped,

the habitat ranges from small patches of forest, to

agricultural fields, small towns and villages, and

suburban development. This range of habitats would

be expected to support different assemblages of

acoustically communicating species resulting in dif-

ferent biological sound. Accounting for these differ-

ences in landscape through the appropriate covariates

could also better inform the radius used to calculate

the road covariate, as the attenuation and transmission

of sound is highly dependent on the structure of the

landscape (Royle 2018). In this study we did not have

data on important landscape variables and so a 600 m

boundary was used as an estimate for how far

anthropogenic noise will travel through a forested

landscape based on Forman (2000) and MacLaren

et al. (2018).

The PSD and acoustic indices derived from it

(NDSI) have previously been shown to correlate

positively with anthropogenic activity (Fairbrass

et al. 2017) and change with landscape structure

(Fuller et al. 2015). Our soundscape maps support

these findings as the PSD of the 0.5–2 kHz range

that represents anthropogenic noise is highest in

areas of high road concentration. However, the use

of the PSD to represent anthropogenic noise and

biological sound as we did in this study is limited in

application to long-term soundscape monitoring

studies. Depending on the location and time of

day, numerous organisms communicate within the

0.5–2 kHz region that is designated as anthro-

pogenic noise. In our study, a manual analysis of the

recordings revealed only one species commonly

singing within the 0.5–2 kHz region, supporting the

use of the PSD values as proxies of biological sound

and anthropogenic noise in this setting. In addition,

we only recorded on days with no rain and minimal

wind, minimizing the presence of abiotic sounds in

the soundscape recordings, which is often not

possible over vast spatio-temporal regions. Analysis

of long-term monitoring of soundscapes where such

assumptions are not valid requires alternative meth-

ods to distinguish between biological sound, anthro-

pogenic noise, and abiotic sound. Convolutional

neural networks have recently been utilized in a

deep learning system called CityNet to predict the

presence or absence of biological sound and

anthropogenic noise in urban soundscapes (Fairbrass

et al. 2019). Recent work using the spectral prop-

erties of sound as is done in Music Information

Retrieval also shows promise for distinguishing

between the three soundscape components (Bellis-

ario and Pijanowski 2019; Bellisario et al. 2019).

Further developing these methods, in conjunction

with current acoustic indices and landscape mea-

surements, could provide reasonable estimations of

the relative amounts of biological sound, anthro-

pogenic noise, and abiotic sound in a soundscape to

allow for long-term monitoring of soundscapes and

landscape health.

Like many ecological studies, data collection was

limited as a result of resource availability (i.e., number

of acoustic recorders). In this study, each soundscape

was recorded on a single day between May and June

for a total of 90 min. While this data paucity could

have potential implications on inference, exploratory

data analysis revealed that the specific day of the

recording and time from sunrise did not explain large
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amounts of variability in the relationships between the

road covariate, anthropogenic noise, and biological

sound, suggesting we are accurately capturing the

relationship between anthropogenic and biological

components in these soundscapes. Thus, we believe

the available data and analysis provide valid inference

about the soundscape dynamics in our study system

and allow us to adequately explore the study objec-

tives. Further, our proposed modeling framework is

broadly applicable to settings where monitoring

networks have additional data.

The proposed models were used to assess the extent

to which available traffic data explains variability in

anthropogenic noise and to quantify the functional

relationship between anthropogenic noise and biolog-

ical sound. Roads represent the dominant source of

anthropogenic noise across the landscape in our study

area, and have a large and growing impact around the

world (Barber et al. 2011; Buxton et al. 2017).

Understanding and predicting the sound impacts of

roads on biological communities is an important focus

of ecoacoustics researchers in many locations (Forman

and Deblinger 2000; Herrera-Montes and Aide 2011;

Mullet et al. 2016). The hierarchical Bayesian frame-

work allows us to obtain parameter estimates, fitted

values, and predicted values at new locations all

within the samemodeling framework. This framework

can incorporate a range of soundscape data to explore

a variety of topics, such as the relationship between

biological sounds and anthropogenic impacts like road

sound or habitat fragmentation, the monitoring of

species density and population estimates using acous-

tic recordings, and the recovery of environments to

natural/anthropogenic disturbances. Ecologists, con-

servation biologists, urban planners, and road engi-

neers all have an interest in these questions. Utilization

of such a broadly applicable modeling framework will

greatly improve our ability to make inference regard-

ing the ways anthropogenic noise contributes to the

soundscape and influences biological sound and the

biodiversity that it represents.
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