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1 Introduction

This vignette provides complete details on the calculation of posterior predictive checks in spAbundance with
the ppcAbund () function. Here we discuss only the underlying statistical details and calculations used in
the posterior predictive checks and do not discuss how to implement the posterior predictive checks using
ppcAbund (). Examples of how to use ppcAbund() are provided in the additional model fitting vignettes
on the package website. Note that here we present this in the context of single-species models. Posterior
predictive checks are identical for multi-species models, with all variables now indexed by species.

2 Hierarchical distance sampling models

Let I = 1,...L denote the L MCMC samples obtained from the model fit (after discarding any samples
for burn-in and thinning). The first step in performing a posterior predictive check is to generate a set of

replicate data values from the posterior predictive distribution of the data. Let y; denote the vector of count

data at site j for each of the K distance bands. Next, let yﬁfjp j denote the set of model generated/replicated

counts at site 7 for each all K distance bins for MCMC sample [. For hierarchical distance sampling models,
we calculate replicate data values according to
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where y( ) ; is then the K x 1 vector of the first K values of yrég]

spAbundance provides four different types of posterior predictive checks for HDS models, which differ
based on two components (the fit.stat and group arguments in ppcAbund()). First, we can use either
a Freeman-Tukey test statistic (fit.stat = 'freeman-tukey') or a Chi-squared test statistic (fit.stat
= 'chi-squared'). Second, we can calculate the fit statistic using either the raw counts for each site and
distance bin (group = 0), or can first sum all the values at a given site across the K distance bins to generate
a single value at each site, and then calculate the test statistic using that value (group = 1).

2.1 fit.stat = 'freeman-tukey' and group = 0

Let T( ) denote the test statistic calculated for the true data and Tr(q)? ik the test statistic calculated for the

rephcate data at each MCMC sample [ at site j and distance bin k. Here we have
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The test statistics above can provide information on what locations and/or distance bins are showing
inadequate model fit. Posterior quantiles for these values are available in the fit.y.group.quants and
fit.y.rep.group.quants components of the resulting list that comes from ppcAbund (). For an overall GoF
statistic across all sites and distance bands, we calculate
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Posterior quantiles (2.5, 25, 50, 75, and 97.5) of Tj(z (fit.y.group.quants) and Tr(e% jx (fit.y.rep.group.quants)

are included in the resulting model object when calling ppcAbund (), and thus can be visualized to understand
where the model is fitting well and where it is not. The full sets of MCMC samples is returned for 7
(fit.y) and Tr(elg,,‘ (fit.y.rep) are included in the resulting object from ppcAbund (), which are then used

to calculate a Bayesian p-value according to
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Bayesian p-value =

where I(-) is the indicator function. Thus, the Bayesian p-value is the proportion of the total L samples in
which the overall fit statistic calculated using the replicate data is greater than the value calculated using the
observed data. Values around 0.5 indicate adequate model fit, while values close to the extremes of 1 and 0
indicate inadequate model fit.



2.2 fit.stat = 'chi-squared' and group = 0

Values are defined analogously to the previous section with the only difference being the form of the test
statistic
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where ¢ = 0.0001 is a very small constant to avoid dividing by 0 when expected counts are very close to 0. As
before, we then have
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2.3 fit.stat = 'freeman-tukey' and group = 1

When setting group = 1, a posterior predictive check is calculated using the total number of observations
across all K distance bands at a given site, instead of using the individual count value in distance band & at

each site j. Define y;. and yr(é)p ;.. as the total number of individuals at site j for the observed data and the
replicate data during iteration [, respectively. More specifically,
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Our posterior predictive check then proceeds according to
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Bayesian p-value =

2.4 fit.stat = 'chi-squared' and group =

Our final posterior predictive check is analogous to the previous section, except we now use a chi-squared test
statistic.
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3 N-mixture models

Posterior predictive checks proceed analogously for N-mixture models. Let y; , denote the observed number
of individuals at site j during replicate visit k. We will use the same notation as detailed previously. For
N-mixture models, the argument type controls how the replicate data are calculated. The argument type
takes two values. For what we call conditional replicate values (type = 'conditional'), we have

Ysep, . ~ Binomial(N[”, p)), (11)

where V. ]@ denotes the posterior distribution of latent abundance values that is estimated directly when fitting
the model. The second approach calculates “marginal” replicate values (type = 'marginal'), where we first
generate replicate data by predicting a value of latent abundance at site j using the expected abundance
at site j at MCMC sample [ (i.e., u(.l)) and then subsequently generating a replicate data point for each

J
replicate k at site j. More specifically, we have
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See the section on posterior predictive distributions in the N-mixture modeling vignette for more details.

Once the replicate data values are generated, the posterior predictive checks and calculation of Bayesian
p-values is essentially identical to HDS. Below we give the equations used to perform each type of posterior
predictive check that is available for N-mixture models. See the previous section on posterior predictive
checks in HDS models for full definitions of all variables.

3.1 fit.stat = 'freeman-tukey' and group = 0
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3.2 fit.stat = 'chi-squared' and group =
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3.3 fit.stat = 'freeman-tukey' and group = 1
K;
= Zyj,k

@)
yrep Js Z Yrep,j k-

0 ) (15)
rep,j ( Yrep.j,
0 _ S~
l l
J
i=1
Q) 0
Trep, = ZTrep,J
j=1
L () 0
I(Trep.. > T
Bayesian p-value = 221 I( Lp, )
3.4 fit.stat = 'chi-squared' and group =
UNS
70 _ (.~ S ))
o !
’ Zk l(pj k :u§ ))
(y RNy (l>)>2
(1 _ \7rep k=1\Pj i~ H;
rep,j I
" Zk 1(p]k ,ug))—l-c
s (16)
@) _ )
TV =) T
j:1

@ _ )
TreP" - Z TTGPJ

zle (1), > 1)
2 .

Bayesian p-value =

3.5 fit.stat = 'chi-squared' and group =

For N-mixture models, spAbundance also has functionality for grouping the data by replicate prior to
performing the posterior predictive check. When setting group = 2, a posterior predictive check is calculated
using the total number of observations across all J sites for each replicate k, instead of using the individual
count value in replicate k at each site j. Define y. ;, and y g S the total number of individuals detected
during visit k across all J sites for the observed data and the replicate data during iteration [, respectively.
More specifically,
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Our posterior predictive check and calculation of the Bayesian p-values proceeds as follows, where K.y is
the maximum number of replicates at any given site.
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3.6 fit.stat = 'freeman-tukey' and group =
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4 Generalized linear mixed models

Posterior predictive checks proceed analogously for GLMMs. Let y; denote the observed number of individuals
at site j. spAbundance supports two types of posterior predictive checks for GLMMs.



4.1 fit.stat = 'freeman-tukey' and group =
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