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1 Introduction
This document provides statistical details on the MCMC algorithms used to fit spatially-varying coefficient
(SVC) models in spOccupancy. In particular, we discuss the Gibbs samplers for the following two models
presented in (Doser et al. 2024):

1. A single-species SVC occupancy model using svcPGOcc()
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2. A multi-species SVC occupancy model using svcMsPGOcc()

2 Single-species spatially-varying coefficient occupancy model
2.1 Model description
Let sj denote the spatial coordinates of site j, where j = 1, . . . , J . We define z(sj) as the true presence (1)
or absence (0) of the target species at site j with spatial coordinates sj . We model z(sj) as

z(sj) ∼ Bernoulli(ψ(sj)), (1)

where ψ(sj) is the occupancy probability of the species at site j. We model ψ(sj) according to

logit(ψ(sj)) = (β1 + δ1w1(sj)) +
H∑
h=2

xh(sj){βh + δhwh(sj)}, (2)

where β1 is an intercept, xh(sj) is the hth covariate with h = 2, . . . ,H, βh is the non-spatial effect of covariate
xh(sj), and w1(sj) and wh(sj) are spatially-varying effects for the intercept and covariates, respectively.
We use indicator variables δh for h = 1, . . . ,H to indicate those covariates whose effects vary spatially
(δh = 1) and those whose effects are assumed constant (δh = 0). Note that the model reduces to a traditional
single-species occupancy model when δh = 0 for all h and a spatial occupancy model (Johnson et al. 2013;
Doser et al. 2022) when δ1 = 1 and δh = 0 for all h > 1. For later use, define H̃ as the total number
of spatially-varying effects estimated in the model (i.e., H̃ =

∑H
h=1 δh), define x̃(sj) as the H̃ × 1 vector

of covariates at location j (including an intercept if applicable), and define β̃h(sj) = βh + wh(sj) as the
spatially-varying coefficients for those effects with δh = 1.

Let L = {s1, s2, . . . , sJ} be the set of sampled spatial locations, and define wh as a J × 1 vector of the spatial
random effects for covariate h for each of the H̃ effects with corresponding δh = 1. The spatially-varying effects
wh serve as local adjustments of the covariate effects (or intercept) at each site j from the overall non-spatial
effect βh, resulting in the covariate having a unique effect (i.e., β̃h(sj)) on species occupancy probability at
each site j. Following Alan E. Gelfand et al. (2003), we envision each h = 1, . . . , H̃ spatially-varying effect
wh(sj) as a realization of a smooth latent surface {wh(s) | s ∈ D}, where D is the geographical domain of
interest. Following standard approaches for modeling species distributions (e.g., Latimer et al. (2006)), we use
Gaussian Processes (GPs) to model each of the H̃ smooth functions across the spatial domain. By definition,
a GP model for the hth spatially-varying surface {wh(s)} implies that for any finite set of locations L, the
vector of random effects wh follows a zero-mean multivariate Gaussian distribution with a J × J covariance
matrix Ch(s, s′,θh) that is a function of the distances between any pair of site coordinates s and s′ and a
set of parameters (θh) that govern the spatial process according to a parametric covariance function. In our
subsequent simulations and case study, we use an exponential covariance function such that θh = {σ2

h, ϕh},
where σ2

h is a spatial variance parameter and ϕh is a spatial decay parameter. Large values of σ2
h indicate

large variation in the magnitude of a covariate effect across space, while values of σ2
h close to 0 suggest little

spatial variability in the magnitude of the effect. ϕh controls the distance-dependent decay of the spatial
dependence in the covariate effect and is inversely related to the spatial range, such that when ϕh is small,
the covariate effect has a larger range of spatial dependence and varies more smoothly across space compared
to larger values of ϕh. When using an exponential correlation function, the effective spatial range, or the
distance at which the spatial correlation between points drops to 0.05 (Banerjee, Carlin, and Gelfand 2014),
corresponds to approximately 3 / ϕ (i.e., since 3 ≈ −log(0.05)).

Both frequentist and Bayesian estimation of the model defined by (1) and (2) requires taking the inverse and
determinant of H̃ dense J × J covariance matrices (i.e., Ch(s, s′,θh)), which involves O(J3) computations
for each of the H̃ spatially-varying coefficients (floating point operations or FLOPs), which quickly renders
such an approach impractical for even moderately sized data sets (i.e., hundreds of spatial locations). Here we
replace the GP prior for the spatially-varying coefficients with a Nearest Neighbor Gaussian Process (NNGP)
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prior (Datta et al. 2016). The NNGP is a valid GP that is based on writing the full multivariate Gaussian
distribution for wh as a product of conditional densities, such that

p(wh) = p(wh(s1)) · p(wh(s2) | wh(s1)) · · · p(wh(sJ) | wh(sJ−1), . . . ,wh(s1)), (3)

where p(·) denotes a probability density function. The NNGP prior achieves computational efficiency by
replacing the conditioning sets on the right-hand side of (3) with a set of new conditioning sets, whose
maximum size is determined by a pre-specified number of neighbors, m, where m << J . Datta et al. (2016)
showed that m = 15 provides nearly identical inference to the full GP under a variety of scenarios. Let N(sj)
denote the set of at most m neighbors for location sj . Following Vecchia (1988), we set N(sj) to be the set
of at most m nearest neighbors of sj from {s1, s2, . . . , sj−1} with respect to Euclidean distance. Note that
this requires the set of L locations to have some prespecified ordering, where here we order the coordinates
along the horizontal axis. Through careful construction of the neighbor sets and set of spatial locations as
a directed acyclic graph, Gaussian distribution theory reveals the NNGP prior yields a new joint density
for wh, denoted p̃(wh). Let wh(N(sj)) denote the at most m realizations of the hth NNGP at the locations
in the neighbor set N(sj). Let C(·,θh) denote the covariance function of the original GP from which the
hth NNGP is derived. For any two sets A1 and A2, define CA1,A2(θh) as the covariance matrix between the
observations in A1 and A2 for the hth GP. For all h = 1, . . . , H̃, our NNGP prior for wh thus takes the form

p̃(wh) =
J∏
j=1

Normal(wh(sj) | bh(sj)wh(N(sj)), fh(sj)), (4)

where bh(sj) is defined as
bh(sj) = Csj ,N(sj)(θh)C−1

N(sj),N(sj)(θh), (5)

and fh(sj) is defined as

fh(sj) = Csj ,sj (θh) − Csj ,N(sj)(θh)C−1
N(sj),N(sj)(θh)CN(sj),sj

(θh). (6)

To account for imperfect detection in an occupancy modeling framework, k = 1, . . . ,K(sj) sampling replicates
are obtained at each site j to estimate whether a nondetection of the target species is truly an absence
(MacKenzie et al. 2002; Tyre et al. 2003). We model the observed detection (1) or nondetection (0) of a
study species at site j, denoted yk(sj), conditional on the true latent occupancy process z(sj), following

yk(sj) | z(sj) ∼ Bernoulli(pk(sj)z(sj)), (7)

where pk(sj) is the probability of detecting the species at site j during replicate k given the species is truly
present at the site. We model detection probability as a function of site and/or observation-level covariates
according to

logit(pk(sj)) = vk(sj)⊤α, (8)

where α is a vector of regression coefficients (including an intercept) that describe the effect of site and/or
observation covariates vk(sj) on detection. Note that following the standard occupancy model, we assume
independence between the replicate surveys, conditional on the true occupancy status z(sj) and covariates
vk(sj), the true occupancy status does not change over the K(sj) replicate surveys, and there are no false
positives (i.e., if z(sj) = 0, then yk(sj) = 0 for all k). We assume effects of covariates on detection probability
are constant over space, but in principle spatially-varying covariate effects could be added to the detection
model using the same process described above.

We assign independent Gaussian priors to all non-spatial regression coefficients (β and α), independent
inverse-Gamma priors to the spatial variance parameters (σ2

h) for each spatially-varying effect, and independent
uniform priors for the spatial decay parameters (ϕh).
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2.2 Gibbs sampler
2.2.1 Update occurrence auxiliary variables (ωβ(sj))

We first sample the occurrence auxiliary variable (ωβ(sj) individually for each site j. Our full conditional is

ωβ(sj) | · ∼ PG(1,x(sj)⊤β + x̃(sj)⊤w(sj)). (9)

2.2.2 Update detection auxiliary variables (ωk,α(sj))

We next update the latent Pólya-Gamma auxiliary variable for the detection process, ωk,α(sj), for each
replicate k at each site j. Note that we only need to sample ωk,α(sj) when

∑Kj

k=1 yk(sj) = 0. Following
Polson, Scott, and Windle (2013), we have

ωk,α(sj) | · ∼ PG(1,v(sj)⊤α). (10)

2.2.3 Update non-spatial occurrence regression coefficients (β)

Define w̃(sj) = x̃(sj)⊤w(sj), and similarly let w̃ be the J × 1 vector of w̃(sj) for all j = 1, . . . , J . Let
β ∼ N(µ0,β ,Σβ) denote the prior distribution for β, with Σβ being a diagonal matrix. The Pólya-Gamma
scheme induces a Gibbs update for the occurrence regression coefficients, which are updated at each iteration
according to

β | · ∼ Normal
(

[Σ−1
β + X⊤SβX]−1[X⊤(z − 0.51J − Sβw̃) + Σ−1

β µ0,β ], [Σ−1
β + X⊤SβX]−1

)
, (11)

where Sβ is a diagonal J×J matrix with diagonal entries equal to the latent PG variable values (ω1,β , . . . , ωJ,β)
and z is the J × 1 vector of the latent occurrence values.

2.2.4 Update detection regression coefficients (α)

Similarly, let α ∼ N(µ0,α,Σα) denote the prior distribution for α, with Σα being a diagonal matrix. We
sample the detection regression coefficients α from

α | · ∼ Normal
(

[Σ−1
α + Ṽ

⊤
SαṼ ]−1[Ṽ ⊤(ỹ − 0.51J∗) + Σ−1

α µ0,α], [Σ−1
α + Ṽ

⊤
SαṼ ]−1

)
. (12)

The detection regression coefficients α are only informed by the locations where z(sj) = 1, since we assume
no false positive detections in the standard occupancy model. We define J∗ as the total number of sites at
the current iteration of the MCMC with z(sj) = 1. Sα is a diagonal matrix with diagonal entries equal to
the latent Pólya-Gamma variable values (ω1,1,α, . . . , ωJ∗,KJ∗ ,α). The matrix Ṽ is the matrix of detection
covariates associated with the sites where z(sj) = 1. Similarly, ỹ is a vector of stacked detection-nondetection
data values at the entries associated with z(sj) = 1.

2.2.5 Update spatially-varying coefficients (w(sj))

Next we update the spatially-varying coefficients w(sj) sequentially for each of the j = 1, . . . , J spatial
locations. Let N(sj) denote the set of m nearest neighbors of sj among s1, s2, . . . , sJ−1. For all model
implementations in spOccupancy, we order the spatial locations by the horizontal axis. Let wh(N(sj))
denote the m realizations of the hth NNGP at the locations in N(sj), where h iterates across the total H̃
spatially-varying coefficients. Let C(·,θh) denote the covariance function of the original Gaussian Process
(GP) from which the hth NNGP is derived. For any two sets A1 and A2, define CA1,A2(θh) as the covariance
matrix between the observations in A1 and A2 for the hth GP. For j ≥ 1, we have

bh(sj) = Csj ,N(sj)(θh)C−1
N(sj),N(sj)(θh), (13)
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where bh(s1) = 0 for all h = 1, . . . , H̃. Further, we have

fh(sj) = Csj ,sj (θh) − Csj ,N(sj)(θh)C−1
N(sj),N(sj)(θh)CN(sj),sj

(θh). (14)

For any two locations s1 and s2, if s1 ∈ N(s2) and is the lth member of N(s2), then define bh(s2, s1) as
the lth entry of bh(s2). Let U(s1) = {s2 ∈ S | s1 ∈ N(s2)} be the collection of locations s2 for which
s1 is a neighbor, where S is the set of all J spatial locations. For every s2 ∈ U(s1), define ah(s2, s1) =
wh(s2) −

∑
s∈N(s2),s ̸=s2

wh(s)bh(s2, s). Extending this to matrix notation, let B(sj) be a H̃ × mH̃ block
matrix, with H̃ × H̃ diagonal blocks containing the elements of bh(sj) for each of the h = 1, . . . H̃ spatial
NNGPs for each of the specific m neighbors. Let F (sj) be a H̃ × H̃ diagonal matrix with diagonal elements
of fh(sj). Let a(s, sj) contain the values ah(s, sj) for each of the h = 1, . . . , H̃ spatially-varying coefficients.
Using this notation, the full conditional for w(sj) is

w(sj) | ·NH̃(µjΣj ,Σj) where,
µj = F (sj)−1B(sj)w(N(sj)) +

∑
s∈U(sj) B(s, sj)⊤F (sj)−1a(s, sj)+

x̃(sj)ωβ(s)j((z(sj) − 0.5)/ωβ(sj) − x(sj)⊤β) and
Σj = (F (sj)−1 +

∑
s∈U(sj) B(s, sj)⊤F (sj)−1B(s, sj) + x̃(sj)⊤Sj,βx̃(s)j)−1,

(15)

where w(N(sj)) is a stacked mq × 1 vector of the m realizations of each of the h NNGPs at the locations in
N(sj) and Sj,β is a H̃ × H̃ diagonal matrix with each diagonal entry equal to the Pólya-Gamma auxiliary
variable at site j.

2.2.6 Update spatial decay parameters (ϕ)

We use a Metropolis within Gibbs step to sample ϕ, the spatial decay parameters for each spatially-varying
coefficient. We assign uniform priors for all spatial decay parameters The full conditional posterior density
for ϕh for each h = 1, . . . , H̃ is proportional to

p(ϕh | ·) ∝ ph(ϕh)p(wh | ϕh)
∝ p(ϕh) ×

∏J
j=1 N (wh(sj) | bh(sj)wh(N(sj)), fh(sj).)

(16)

The same update is used for the spatial smoothness parameter νh if using a Matérn correlation function.

2.2.7 Update spatial variances (σ2)

The default prior for the spatial variance parameter σ2
h for each spatially-varying coefficient in spOccupancy

is an inverse-Gamma distribution (i.e., σ2
h ∼ IG(aσ, bσ)). When using an inverse-Gamma prior, we sample

from the following full conditional:

σ2
h | · ∼ IG(aσ + J/2, bσ + 1

2

J∑
j=1

(wh(sj) − bh(sj)wh(N(sj)))2
/f∗
h(sj), (17)

where f∗
h(sj) = fh(sj)/σ2

h. Note that to generate σ2
h for the lth iteration of the Gibbs sampler, we calculate

f∗
h(sj) using the value of σ2

h in the (h− 1)th iteration.

If using a uniform prior on the spatial variances, the update is analogous to the update for the Metropolis
within Gibbs step of the spatial decay parameters in Equation 16.
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2.2.8 Update latent occurrence values (z(sj))

Finally, we sample the latent occurrence states. We set z(sj) = 1 for all sites where there is at least one
detection of our species of interest, and so we only need to sample z(sj) at sites where there are no detections.
Thus, for all locations with no detections, we sample z(sj) according to

z(sj) | · ∼ Bernoulli
(

ψ(sj)
∏Kj

k=1(1 − pk(sj))
1 − ψ(sj) + ψ(sj)

∏Kj

k=1(1 − pk(sj))

)
. (18)

3 Multi-species spatially-varying coefficient occupancy model
3.1 Model description
Now consider the case where there are multiple species of interest, N , that are observed during data collection.
We seek to jointly model the occupancy of the N species in a single model that accommodates residual
correlations between species and allows for sharing of information across species via hierarchical effects. Such
multi-species approaches often have improved precision and accuracy of estimates compared to single-species
models (Clark et al. 2014; Zipkin et al. 2010). Given the interest in modeling large-scale patterns across
space, a subset of spatial locations in L may fall well outside the potential range of a given species. In our
subsequent modeling development, we consider the case where species-specific range maps are available as an
auxiliary data source to more readily accommodate large differences in the potential locations where each
species can occur.

Using similar notation to the single-species models, we model the true presence-absence state of species i at
site sj following

zi(sj) ∼ Bernoulli(ψi(sj) · z∗
i (sj)), (19)

where ψi(sj) is the occupancy probability of species i at site j, and z∗
i (sj) is a binary auxiliary data source

indicating whether site j is within the range of species i. Such data can be obtained from a variety of sources,
including international databases (e.g., BirdLife International, IUCN) or expert opinion. We suggest buffering
the auxiliary data range map by a suitable distance to account for potential inaccuracies in the auxiliary
data. Inclusion of such auxiliary range data can drastically reduce the computational burden of the model if
certain species can only exist at a subset of the spatial locations in L (Socolar et al. 2022). If auxiliary range
data are not available, z∗

i (sj) can be removed from (19) (or equivalently, z∗
i (sj) = 1 for all j).

At sites within each species set of potentially suitable areas, we model species-specific occupancy probability
as

logit(ψi(sj)) = (βi,1 + δ1w∗
i,1(sj)) +

H∑
h=2

xh(sj){βi,h + δjw∗
i,h(sj)}, (20)

with w∗
i,h(sj) being the spatially-varying component of the intercept (h = 1) or coefficient (h > 1) for species

i at site sj and all parameters as defined before, but now spatial and non-spatial effects are unique to each
species. Note we assume the same variables have spatially-varying effects across species (i.e., δi,h = δh for
all i), although this could be modified to allow δh to vary by species by either setting values a priori or
estimating the indicator variables within the model itself. We model the non-spatial component of the hth
regression coefficient for each species i hierarchically from a common community-level distribution to share
information across species (Dorazio and Royle 2005; Alan E. Gelfand et al. 2005). More specifically, we have

βi,h ∼ Normal(µβh
, τ2
βh

), (21)
where µβh

is the average non-spatial effect across all species in the community, and τ2
βh

is the variability in
the non-spatial effect across all species.
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We seek to jointly model the species-specific spatial effects, w∗
i,t, to account for correlation in species-specific

responses to covariate effects, as well as residual correlation between species after accounting for their
relationships with any covariates included in the model. For a small number of species (e.g., 5), a linear
model of coregionalization (LMC) framework (Alan E. Gelfand et al. 2004) is a viable solution, but such an
approach quickly becomes computationally intractable as the number of species in the community increases.
Instead, we use a spatial factor model (Hogan and Tchernis 2004), a dimension reduction technique that
accounts for correlations in species-specific responses, while drastically reducing computational run time
compared to a LMC that requires estimation of a full N ×N cross-covariance matrix for each effect that is
assumed to vary spatially. Here, we decompose w∗

i,h(sj) into a linear combination of q latent factors and
their associated species-specific coefficients (i.e., factor loadings). Thus for each SVC in the model, we have

w∗
i,h(sj) = λ⊤

i,hwh(sj), (22)

where λ⊤
i,h is the ith row of factor loadings from the N × q loadings matrix Λh, and wh(sj) is a q × 1 vector

of independent spatial factors at site j. As in the single-species SVC occupancy model, we model each of the
r = 1, . . . , q spatial factors for each of the H̃ spatially-varying effects with an NNGP prior following

p̃(wr,h) =
J∏
j=1

Normal(wr,h(sj) | br,h(sj)wr,h(N(sj)), fr,h(sj)), (23)

with br,h(sj) and fr,h(sj) defined in (5) and (6), respectively.

For each SVC, we can derive an inter-species covariance matrix Σh = ΛhΛ⊤
h , which has rank q << N , and,

thus, is singular. However, the inter-species covariance matrices can still be used to detect species clustering
(Shirota, Gelfand, and Banerjee 2019; Doser, Finley, and Banerjee 2023). For a spatially-varying intercept,
the inter-species covariance matrix provides information on the residual co-occurrence patterns between each
pair of species across space after accounting for any covariates included in the model, which can be used to
generate hypotheses regarding the abiotic and/or biotic drivers of residual species co-occurrence patterns (e.g.,
Tobler et al. (2019)). For a spatially-varying covariate effect, a positive correlation between species in Σh

indicates similar responses to an environmental covariate across space, which can be used as a model-based
ordination technique to identify groups of species that respond similarly to changes in environmental variables.

Analogous to the single-species case, we model the observed detection-nondetection of each species i at site j
during replicate survey k, yi,k(sj) conditional on the true presence-absence of each species, zi(sj), following
(7) and (8), with all parameters now varying by species. We model the species-specific detection regression
coefficients (αi) hierarchically, analogous to the non-spatial occupancy regression coefficients in (21).

We assume Gaussian priors for all mean parameters and inverse-Gamma priors for variance parameters.
Additional restrictions on the factors loadings matrix Λh for each spatially-varying coefficient h are required
to ensure identifiability (Taylor-Rodriguez et al. 2019). We fix all elements in the upper triangle to 0 and
set the diagonal elements to 1. We additionally fix the spatial variance parameters σ2

h of each latent spatial
process to 1. We assign standard Gaussian priors for the lower triangular elements in Λ and assign each
spatial range parameter ϕr,h an independent uniform prior.

3.2 Gibbs sampler
Here we describe the Gibbs sampler for fitting the spatially-varying coefficient multi-species occupancy model
using svcMsPGOcc().

3.2.1 Update community-level occurrence coefficients (µβ)

We first sample all community-level parameters followed by species level parameters. First we sample the
community-level occurrence coefficients. Let µβ denote the vector of all community-level occurrence means,
and similarly let T β denote the variance matrix of all community-level occurrence variance parameters.
Note that T β is a diagonal matrix. Let µβ ∼ N(µ0,β ,Σβ) denote our prior distribution, where Σβ is a
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diagonal matrix. Note this is equivalent to assigning an independent normal prior for each coefficient. Our
full conditional for the community-level regression coefficients µβ is then

µβ | · ∼ N([Σ−1
β +NT −1

β ]−1
[ N∑
i=1

(T −1
β βi) + Σ−1

β µ0,β

]
, [Σ−1

β +NT −1
β ]−1). (24)

3.2.2 Update community-level detection coefficients (µα)

Next, we sample the community-level detection coefficients. Let µα denote the vector of all community-level
detection means, and similarly let T α denote the diagonal variance matrix of all community-level detection
variance parameters. Let µα ∼ N(µ0,α,Σα) denote the prior distribution, where Σα is a diagonal matrix.
Our full conditional then takes the form

µα | · ∼ N([Σ−1
α +NT −1

α ]−1
[ N∑
i=1

(T −1
α αi) + Σ−1

α µ0,α

]
, [Σ−1

α +NT −1
α ]−1). (25)

3.2.3 Update community-level occurrence variances (τ 2
β )

Let τ2
h,β denote the community-level variance for the hth occurrence parameter (h = 1, . . . , pψ). We assign an

inverse gamma prior to τ2
h,β with shape parameter aτh,β

and scale parameter bτh,β
. Our full conditional is

then

τ2
h,β | · ∼ IG(aτh,β

+ N

2 , bτh,β
+
∑N
i=1(βi,h − µβh

)2

2 ). (26)

3.2.4 Update community-level detection variances (τ 2
α)

Let τ2
h,α denote the community-level variance for the hth detection parameter (h = 1, . . . , pH). We assign an

inverse gamma prior to τ2
h,α with shape parameter aτh,α

and scale parameter bτh,α
. Our full conditional is

then

τ2
h,α | · ∼ IG(aτh,α

+ N

2 , bτh,α
+
∑N
i=1(αi,h − µαh

)2

2 ). (27)

3.2.5 Update species-specific occurrence auxiliary variables (ωi,β(sj))

We next sample the occurrence auxiliary variable (ωi,β(sj)) individually for each species i and site j. If
z∗
i (sj) = 1 (i.e., site sj is within the species range as defined by any auxiliary data source supplied to the

model), our full conditional is

ωi,β(sj) | · ∼ PG(1,x(sj)⊤βi + x̃(sj)⊤w∗
i (sj)). (28)

For sites and species where z∗
i (sj) = 0, we do not need to generate an auxiliary variable.

3.2.6 Update species-specific detection auxiliary variables (ωi,k,α(sj))

We next update the latent Pólya-Gamma auxiliary variable for the detection process, ωi,k,α(sj), for each
replicate k at each site j for each species i. Note that we only need to sample ωi,k,α(sj) when zi(sj) = 1,
which can change across different MCMC iterations. For such cases when zi(sj) = 0, set ωi,k,α(sj) = 0.
Following Polson, Scott, and Windle (2013), for all sj with zi(sj) = 1 at the current iteration, we have

ωi,k,α(sj) | · ∼ PG(1,v(sj)⊤αi). (29)
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3.2.7 Update species-level occurrence regression coefficients (βi)

We update the species-level occurrence regression coefficients (βi), including the intercept, from the following
multivariate normal full conditional

βi | · ∼ Normal(L∗
β,iµ

∗
β,i,L

∗
β,i), (30)

where

µ∗
β,i = X⊤Z∗

i (zi − 0.51J − Sβ

H̃∑
h=1

X̃h,JZ∗
iW

⊤
h λi,h) + T −1

β µβ, (31)

and

L∗
β,i = [T −1

β + X⊤Z∗
iSβZ∗

iX]−1, (32)

where Sβ is a diagonal J × J matrix with diagonal entries equal to the latent Pólya-Gamma variable values
for species i, zi is the J × 1 vector of latent occurrence values for species i, 1J is a J × 1 vector of 1s, Z∗

i is a
J × J diagonal matrix with diagonal elements equal to the auxiliary range binary data points for species
i, X̃h,J is a J × J diagonal matrix with diagonal elements equal to the hth covariate value at site j whose
effect is assumed to vary spatially, Wh is the q × J matrix of spatial factors for the hth spatially-varying
coefficient, and λi,h is the ith row of factor loadings for the tth spatially-varying coefficient.

3.2.8 Update species-level detection regression coefficients (αi)

Next, we sample the species-specific detection regression coefficients for species i (αi). Define KTOT =∑J
j=1 Kj . Our full conditional update takes the form

αi | · ∼ Normal(L∗
α,iµ

∗
α,i,L

∗
α,i), (33)

µ∗
α,i = V ⊤Zi(yi − 0.51KTOT) + T −1

α µα, (34)

and

L∗
α,i = [T −1

α + V ⊤ZiSαZiV ]−1, (35)

where Sα is a diagonal KTOT ×KTOT matrix with diagnoal entries equal to the latent Pólya-Gamma variable
values for species i, yi is the KTOT × 1 vector of detection-nondetection values for species i, 1KTOT is a
KTOT × 1 vector of 1s, and Zi is a KTOT × KTOT diagonal matrix with diagonal elements equal to the
current value of the latent occurrence state zi at the site corresponding to the given element of yi.

3.2.9 Update latent spatial factors for each SVC (wh(sj))

Let N(sj) denote the set of m nearest neighbors of sj among s1, s2, . . . , sj−1. Let wr,h(N(sj)) denote the
m realizations of the rth NNGP factor for the hth spatially-varying coefficient at the locations in N(sj). Let
C(·, ϕr,h) denote the correlation function of the original Gaussian Process (GP) from which the NNGP is
derived. For any two sets A1 and A2, define CA1,A2(ϕr,h) as the correlation matrix between the observations
in A1 and A2 for the rth GP for the hth spatially-varying coefficient. For j ≥ 1, we have

br,h(sj) = Csj ,N(sj)(ϕr,h)C−1
N(sj),N(sj)(ϕr,h), (36)
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where br,h(s1) = 0 for all r = 1, . . . , q and h = 1, . . . , H̃. Further, we have

fr,h(sj) = Csj ,sj (ϕr,h) − Csj ,N(sj)(ϕr,h)C−1
N(sj),N(sj)(ϕr,h)CN(sj),sj

(ϕr,h). (37)

For any two locations s1 and s2, if s1 ∈ N(s2) and is the lth member of N(s2), then define br,h(s2, s1)
as the lth entry of br,h(s2). Let U(s1) = {s2 ∈ S | s1 ∈ N(s2)} be the collection of locations s2
for which s1 is a neighbor, where S is the set of all J spatial locations. For every s2 ∈ U(s1), define
ar,t(s2, s1) = wr,h(s2) −

∑
s∈N(s2),s ̸=s2

wr,h(s)br,h(s2, s). Extending this to matrix notation, let Bh(sj)
be a q × mq block matrix, with each q × q diagonal block containing the elements of br,h(sj) for each of
the r = 1, . . . q spatial factors for the h = 1, . . . , H̃ spatially-varying coefficients for each of the specific m
neighbors. Let F h(sj) be a q × q diagonal matrix with diagonal elements of fr,h(sj). Let ah(s, sj) contain
the values ar,h(s, sj) for each of the r = 1, . . . , q latent factors for the hth spatially-varying coefficient. Using
this notation, the full conditional distribution for wh(sj) is

wh(sj) | · ∼ Nq(µj,hΣj,h,Σj,h) where,
µj,h = F h(sj)−1Bh(sj)wh(N(sj)) +

∑
s∈U(sj) Bh(s, sj)⊤F h(sj)−1ah(s, sj)+

Λ⊤
h X̃h,N (sj)Z∗

N (sj)SN (sj)(SN (sj)−1(z(sj) − 0.51N ) − Z∗
N (sj)(X(sj)⊤β +

∑H̃
k ̸=h X̃k,N (sj)Λkwk(sj))) and

Σj,h = (F h(sj)−1 +
∑

s∈U(sj) Bh(s, sj)⊤F h(sj)−1Bh(s, sj)+
(Λ⊤

h X̃h,N (sj)Z∗
N (sj))SN (sj)(Λ⊤

h X̃h,N (sj)Z∗
N (sj))⊤)−1,

(38)

where wh(N(sj)) is a stacked mq × 1 vector of the m realizations of each of the r NNGPs at the locations in
N(sj), SN (sj) is an N ×N diagonal matrix with the Pólya-Gamma occupancy variables for each species i
at site j along the diagonal elements, X̃h,N (sj) is a N ×N diagonal matrix with diagonal elements all equal
to the value of the hth spatially-varying covariate at location sj , Z∗

N (sj) is a N ×N diagonal matrix with
diagonal elements equal to the auxiliary range binary data points at site sj for each of the N species, X(sj)⊤

is a N × (NH) block-diagonal matrix with the ith diagonal block the x(sj) vector of H covariates (including
the intercept), and β is the (NH) × 1 stacked vector of species-specific regression coefficients (including the
intercept).

3.2.10 Update latent spatial factor loadings for each SVC (Λh)

Recall we set all diagonal elements of Λh to 1 and all upper triangular elements equal to 0 in order to ensure
identifiability of the latent spatial factors. Given this requirement, let qi = min{i − 1, q} for 2 ≤ i ≤ N ,
and let λ̃i,h = (λi,h,1, . . . , λi,h,qi

)⊤ be the vector representing the unrestricted elements in the ith row of Λh.
Define Wh as the J × q matrix of latent spatial factors for the hth SVC, and let W1:i,h be the first i columns
of Wh. Using this notation, the full conditional density for λ̃i,h is Nq(Ωλ̃i,h

µλ̃i,h
,Ωλ̃i,h

), where

µλ̃i,h
=
{

(X̃h,JZ∗
iWh,1:(i−1))⊤Si,β(S−1

i,β(zi − 0.51J) − Z∗
i (Xβi + [

∑H̃
k ̸=h X̃k,JWkλk,i] + X̃h,Jẇh,i)) if 2 ≤ i ≤ q

(X̃h,JZ∗
iWh)⊤Si,β(S−1

i,β(zi − 0.51J) − Z∗
i (Xβi + [

∑H̃
k ̸=h X̃k,JWkλk,i])) if i > q

(39)

Ωλ̃i,h
=
{

((X̃h,JZ∗
iWh,1:(i−1))⊤Si,β(X̃h,JZ∗

iWh,1:(i−1)) + Ii−1)−1 if 2 ≤ i ≤ q
((X̃h,JZ∗

iWh)⊤Si,β(X̃h,JZ∗
iWh) + Iq)−1 if i > q

, (40)

where ẇh,i is the ith column of Wh, and all other variables are as defined previously.
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3.2.11 Update spatial range parameters (ϕ)

We use a Metropolis within Gibbs step to sample ϕ. The full conditional posterior density for ϕr,h for each
r = 1, . . . , q and h = 1, . . . , H̃ is proportional to

p(ϕr,h | ·) ∝ p(ϕr,h)p(wr,h | ϕr,h)
∝ p(ϕr,h) ×

∏J
j=1 N (wr,h(sj) | br,h(sj)wr,h(N(sj)), fr,h(sj).)

(41)

We sample ϕr,h using a random walk Metropolis step. We use a normal proposal distribution along with a
Jacobian transformation.

3.2.12 Update latent occurrence values (zi(sj))

Finally, we sample the latent occurrence states for each species. We set zi(sj) = 1 for all sites where there is
at least one detection of species i, and so we only need to sample zi(sj) at sites where there are no detections.
We set zi(sj) = 0 for all sites where z∗

i (sj) = 0. Thus, for all locations with no detections of the species i
where z∗

i (sj) = 1, we sample zi(sj) according to

zi(sj) | · ∼ Bernoulli
(

ψi(sj)
∏Kj

k=1(1 − pi,k(sj))
1 − ψi(sj) + ψi(sj)

∏Kj

k=1(1 − pi,k(sj))

)
. (42)
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