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1 Introduction
This vignette provides statistical details on the MCMC algorithms used to fit the core occupancy models in
spOccupancy. Specifically, this vignette will walk through the MCMC algorithms for the following models:

1. Occupancy model using PGOcc().
2. Spatial occupancy model using spPGOcc().
3. Multi-species occupancy model using msPGOcc().
4. Spatial multi-species occupancy model using spMsPGOcc().
5. Integrated occupancy model using intPGOcc().
6. Spatial integrated occupancy model using spIntPGOcc().

We provide detailed descriptions of the joint posterior distributions for each model, how each parameter is
updated in the model fitting process, and provide relevant citations to more specific documentation of the
approaches where necessary. We also provide information on the composition sampling algorithms used for
each model to predict at out-of-sample locations. Details on models in spOccupancy that account for species
interactions are provided in a separate vignette.

2 Single-species occupancy model (PGOcc)
2.1 Model description
Let zj be the true presence (1) or absence (0) of a species at site j, with j = 1, . . . , J . We assume this latent
occupancy process can be represented by a Bernoulli process following

zj ∼ Bernoulli(ψj),
logit(ψj) = x⊤

j β,
(1)

where ψj is the probability of occurrence at site j, which is a function of site-specific covariates X and a
vector of regression coefficients (β).

We do not directly observe zj , but rather we observe an imperfect representation of the latent occurrence
process. Let yj,k be the observed detection (1) or nondetection (0) of a species of interest at site j during
replicate k for each of k = 1, . . . ,Kj replicates at each site j. We envision the detection-nondetection data as
arising from a Bernoulli process conditional on the true latent occurrence process:

yj,k ∼ Bernoulli(pj,kzj),
logit(pj,k) = v⊤

j,kα,
(2)

where pj,k is the probability of detecting a species at site j during replicate k (given it is present at site j),
which is a function of site and replicate specific covariates V and a vector of regression coefficients (α).

We assume multivariate normal priors for the occurrence (β) and detection (α) regression coefficients to
complete the Bayesian specification of a single-species occupancy model. Traditionally, when estimation
occurs in a Bayesian framework, the regression coefficients for occurrence (β) and detection (α) must be
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updated using Metropolis updates, which can lead to slow convergence and bad mixing of MCMC chains
(Clark and Altwegg 2019). Instead, we introduce Pólya-Gamma latent variables (Polson, Scott, and Windle
2013) for both the occurrence and detection portions of the model, which induces Gibbs updates for all
parameters in the single-species occupancy model.

More specifically, let ωj,β follow a Pólya-Gamma distribution with parameters 1 and 0, i.e., ωj,β ∼ PG(1, 0).
Given this latent variable, we can express the Bernoulli process of zj as

ψ
zj

j (1 − ψj)1−zj =
exp(x⊤

j β)zi

1 + exp(x⊤
j β)

= exp(κjx⊤
j β)

∫
exp(−ωj,β

2 (x⊤
j β)2)p(ωj,β | 1, 0)dωj,β ,

(3)

where κj = zj − 0.5 and p(ωj,β) is the probability density function of a Pólya-Gamma distribution with
parameters 1 and 0 (Polson, Scott, and Windle 2013). Similarly, we define ωj,k,α ∼ PG(1, 0) as a Pólya-Gamma
latent variable for the detection portion of the occupancy model, which results in a similar re-expression of
the Bernoulli likelihood for yj,k as for zj . These re-expressions of the Bernoulli processes result in Gibbs
updates for both the occurrence (β) and detection (α) regression coefficients when they are assigned normal
priors (Polson, Scott, and Windle 2013; Clark and Altwegg 2019).

Our full joint posterior for a single-species occupancy model thus takes the following form:

[α,β, z,ωβ ,ωα | Y ] ∝
J∏

j=1

Kj∏
k=1

Bernoulli(yj,k | pj,kzj)×

Bernoulli(zj | ψj)×
PG(ωj,β | 1, 0)×
PG(ωj,k,α | 1, 0)×
Normal(β | µ0β ,Σβ)×
Normal(α | µ0α,Σα)

2.2 MCMC sampler
The Pólya-Gamma data augmentation induces a Gibbs update for all parameters in the single-species
occupancy model. We first sample the occurrence and detection auxiliary variables from

ωj,β | · ∼ PG(1,x⊤
j β),

ωj,k,α | · ∼ PG(1,v⊤
j,kα),

(4)

respectively. We next sample the occurrence regression coefficients β from

β | · ∼ Normal
(

[Σ−1
β + X⊤SβX]−1[X⊤(z − 0.51J) + Σ−1

β µ0β ], [Σ−1
β + X⊤SβX]−1

)
, (5)

where Sβ is a diagonal J×J matrix with diagonal entries equal to the latent PG variable values (ω1,β , . . . , ωJ,β).

Similarly, we sample the detection regression coefficients α from

α | · ∼ Normal
(

[Σ−1
α + Ṽ

⊤
SαṼ ]−1[Ṽ ⊤(ỹ − 0.51J∗) + Σ−1

α µ0α], [Σ−1
α + Ṽ

⊤
SαṼ ]−1

)
. (6)
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The detection regression coefficients α are only informed by the locations where zj = 1, since we assume no
false positive detections in the standard occupancy model. We define J∗ as the total number of sites at the
current iteration of the MCMC with zj = 1. Sα is a diagonal matrix with diagonal entries equal to the latent
Pólya-Gamma variable values (ω1,1,α, . . . , ωJ∗,KJ∗ ,α). The matrix Ṽ is the matrix of detection covariates
associated with the sites where zj = 1. Similarly, ỹ is a vector of stacked detection-nondetection data values
at the entries associated with zj = 1.

Finally, zj is set to 1 for all sites where there is at least one detection, and thus we only need to sample zj at
sites where there are no detections. Thus, for all locations with no detections, we sample zj according to

zj | · ∼ Bernoulli
(

ψj

∏Kj

k=1(1 − pj,k)
1 − ψj + ψj

∏Kj

k=1(1 − pj,k)

)
. (7)

2.3 Prediction
Prediction for a nonspatial single-species occupancy model is a simple composition sampling problem (Banerjee,
Carlin, and Gelfand 2003). Given a set of occurrence covariates at a set of non-sampled locations (X0),
we can derive the latent occurrence probability and the latent occurrence state at each non-sampled site
j = 1, . . . , J0 for each posterior sample q of the MCMC sampler following

logit(ψ(q)
j ) = x⊤

0,jβ(q),

z
(q)
j ∼ Bernoulli(ψ(q)

j ).
(8)

3 Single-species spatial occupancy model (spPGOcc)
3.1 Gaussian Process formulation
3.1.1 Model description

We extend the previous single-species occupancy model to incorporate a spatial Gaussian process that
accounts for unexplained spatial variation in species occurrence across a region of interest. Let sj denote the
geographical coordinates of site j for j = 1, . . . , J . The species-specific occurrence probability at site j with
coordinates sj , ψ(sj), now takes the form

logit(ψ(sj)) = x(sj)⊤β + w(sj), (9)

where w(sj) is a realization from a zero-mean spatial Gaussian Process, i.e.,

w(s) ∼ N(0,Σ(s, s′,θ)). (10)

We define Σ(s, s′,θ) as a J × J covariance matrix that is a function of the distances between any pair of site
coordinates s and s′ and a set of parameters (θ) that govern the spatial process. The vector θ is equal to
θ = {σ2, ϕ, ν}, where σ2 is a spatial variance parameter, ϕ is a spatial decay parameter, and ν is a spatial
smoothness parameter. ν is only specified when using a Matern correlation function.

The detection portion of the occupancy model remains unchanged from the non-spatial occupancy model
and follows Equation (2). Formulation of Pólya-Gamma latent variables is also exactly analogous to the
nonspatial model (Equation (3)), with all references to ψj now including the latent spatial random effects in
addition to the site-level covariates.

Following standard recommendations for point-referenced spatial data (Banerjee, Carlin, and Gelfand 2003),
we assign an inverse-Gamma prior to the spatial variance parameter and uniform priors to the spatial decay
and spatial smoothness parameters. We also allow users to specify a uniform prior on the spatial variance
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parameter σ2 instead of an inverse-Gamma prior. This can be useful in certain situations when working
with binary data, as there is a confounding between the spatial variance parameter σ2 and the occurrence
intercept β0 as a result of the logit transformation and Jensen’s Inequality (Bolker 2015). Generally, we have
found this confounding to be inconsequential, as the spatial structure of the random effects helps to separate
σ2 from β0. However, there may be certain circumstances when σ2 is estimated to be extremely large, and
the estimate of β0 is a very large magnitude negative number. It can be helpful in these situations to use a
uniform distribution on σ2 to restrict it to taking more reasonable values. In the following, we present the
full joint distribution of all models using an inverse-Gamma prior on σ2, as we nearly always use this prior in
our own analyses.

Our full joint posterior distribution takes the following form, where IG stands for the inverse-Gamma
distribution:

[α,β, z,ωβ ,ωα,w(s),θ | Y ] ∝
J∏

j=1

Kj∏
k=1

Bernoulli(yj,k | pj,kzj)×

Bernoulli(zj | ψj)×
Normal(w(s) | 0,Σ(s, s′,θ))×
PG(ωj,β | 1, 0)×
PG(ωj,k,α | 1, 0)×
Normal(β | µ0β ,Σβ)×
Normal(α | µ0α,Σα)×
IG(σ2 | aσ2 , bσ2)×
Uniform(ϕ | aϕ, bϕ)×
Uniform(ν | aν , bν)

3.1.2 MCMC sampler

We first sample the occurrence and detection auxiliary variables from

ωj,β | · ∼ PG(1,x⊤
j β + wj),

ωj,k,α | · ∼ PG(1,v⊤
j,kα),

(11)

The Pólya-Gamma scheme induces a Gibbs update for the occurrence regression coefficients, which are
updated at each iteration according to

β | · ∼ Normal
(

[Σ−1
β + X⊤SβX]−1[X⊤(z − 0.51J − Sβw) + Σ−1

β µ0β ], [Σ−1
β + X⊤SβX]−1

)
, (12)

where Sβ is a diagonal J×J matrix with diagonal entries equal to the latent PG variable values (ω1,β , . . . , ωJ,β).

The full conditional for the detection regression coefficients is the same as in the non-spatial model shown in
Equation (6).

When using an inverse-Gamma prior, the spatial variance parameter, σ2, is sampled via a Gibbs update of
the form

σ2 | · ∼ IG
(J

2 + aσ2 ,
w⊤R−1w

2 + bσ2

)
, (13)

where R is a J × J spatial correlation matrix.
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The full conditional distributions for the spatial range parameter, ϕ, and spatial smoothness parameter,
ν, are not available in closed form, and thus we use random walk Metropolis updates (e.g., Robert and
Casella (2013)) to update these parameters. We use a random-walk Metroplis step with a multivariate
normal proposal distribution (either of dimension 1 or of dimension 2 if Matern covariance function is used).
To use the normal distribution as a proposal distribution, we transform the parameters to have a support
spanning the entire real line, including a Jacobian adjustment for the Metropolis step. Tuning parameters are
adaptively updated using Adaptive MCMC following Roberts and Rosenthal (2009). If using a uniform prior
for the spatial variance parameter σ2, this parameter is also updated in this step using the same random-walk
Metropolis step.

The Pólya-Gamma data augmentation scheme also enables a Gibbs update for the latent spatial Gaussian
process (w(s)), as opposed to a traditional spatial occupancy model that requires a Metropolis update for
the latent spatial process. The spatial process is updated according to

w(s) | · ∼ Normal
(

[Sβ + Σ−1]−1[z − 0.51J − SβXβ], [Sβ + Σ−1]−1
)
. (14)

Finally, for all sites with no detections, the latent occurrence values zj are updated following Equation (7).

3.1.3 Prediction

Prediction for spatial occupancy models requires use of standard results for conditional multivariate normal
distributions (Banerjee, Carlin, and Gelfand 2003). To predict latent occurrence and occurrence probability
at non-sampled sites, we first need to predict the spatial process at the unobserved locations. Let w(s0)
denote the spatial process at the J0 non-sampled locations. We assume that w(s0) and w(s) (the spatial
process at observed locations) arise from a multivariate normal distribution following

[
w(s)
w(s0)

]
| · ∼ Normal

([
0
0

]
,

[
Σ11 Σ12
Σ⊤

12 Σ22

])
, (15)

where Σ11 = Σ, Σ12 is the J × J0 cross-covariance matrix between w(s) and w(s0), and Σ22 is the variance-
covariance matrix for w(s0). Using conditional multivariate normal theory, this results in the following
posterior predictive distribution for the spatial process at nonsampled locations

w(s0) ∼ Normal(Σ⊤
12Σ−1

11 w(s),Σ22 − Σ⊤
12Σ−1

11 Σ12). (16)

We can use composition sampling to sample from this posterior predictive distribution by using the values for
w at each sample q of the posterior distribution. This will generate a full predictive posterior sample which
we can summarize with full uncertainty quantification.

Predicting all J0 locations jointly can be expensive when J0 is large. Thus, we perform independent individual
predictions of the spatial process at each non-sampled location j = 1, . . . , J0. Finally, to predict the latent
occurrence and latent occurrence probability at each non-sampled site j, we perform the following steps for
each posterior sample q.

1. Sample w(q)(s0,j) from Equation (16), substituting in the current values at sample q of the spatial
parameters and latent spatial process at the observed locations.

2. Compute the latent occurrence probability ψ(q)(sj) as logit−1(x⊤
0,jβ(q) + w(q)(s0,j)).

3. Sample the latent occurrence from z
(q)
j ∼ Bernoulli(ψ(q)(sj)).

3.2 Nearest Neighbor Gaussian Process formulation
When the number of sites is moderately large, say 1000, the above described spatial Gaussian process model
can be drastically slow as a result of the need to take the inverse of the spatial covariance matrix Σ(s, s′,θ)
at each MCMC iteration. Numerous approximation methods exist to reduce this computational cost (Heaton
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et al. 2019). One attractive approach is the Nearest Neighbor Gaussian Process (NNGP; Datta et al. (2016)).
Instead of modeling the spatial process using a full GP as shown in Equation (10), we replace the GP prior
specification with a NNGP, which leads to drastic decreases in run time with nearly identicial inference and
prediction as the full GP specification. See Datta et al. (2016) for theoretical details on the NNGP and its
relationship to the full GP.

3.2.1 Model description

The joint posterior distribution for the NNGP model is exactly the same as that of the full GP spatial
occupancy model except the Gausian Process specification assigned to the latent spatial random effects w(s)
is replaced with an NNGP prior (Datta et al. 2016).

3.2.2 MCMC sampler

Full conditionals for the Pólya-Gamma latent variables, occurrence regression coefficients, detection regression
coefficients, spatial range (and smoothness if applicable) parameter, and the latent occurrence values are
sampled in the same manner as done for the full GP spatial occupancy model. When using an inverse-Gamma
prior, the full conditional for the spatial variance parameter σ2 similarly takes the form of an inverse-Gamma
distribution, or when using a uniform prior, the update is the same as the full GP spatial occupancy model.
The Pólya-Gamma data augmentation scheme induces the following full conditional for the latent spatial
process when using an NNGP prior:

w(s) | · ∼ Normal(B[S−1
β (z̃ − Xβ)],B) (17)

where Sβ is a diagonal J × J matrix with diagonal entries equal to the latent Pólya-Gamma variable values,
z̃j = zj−0.5

ωj,β
, and B = Σ̃(s, s′,θ)−1 + Sβ . Σ̃(s, s′,θ) is the NNGP covariance matrix. For details of the

NNGP covariance matrix, see Datta et al. (2016) and Finley et al. (2019).

As described by Finley, Datta, and Banerjee (2020) and Datta et al. (2016), the above block update of w(s)
is not computationally practical. Instead, we sequentially update the full conditionals individual for each
j = 1, . . . , J element of w(s) following the algorithm in Datta et al. (2016). This ensures each update of the
full latent spatial random efffects vector occurs in O(J) floating point operations (FLOPs).

3.2.3 Prediction

Prediction for the NNGP occupancy model follows a similar algorithm to that of the full GP spatial occupancy
model. We first sample the observed spatial random effects when fitting the model, use these random effects
to generate the spatial random effects at new locations, and subsequently use the predicted spatial random
effects to generate predictions of latent occurrence and occurrence probability. More specifically, our approach
for prediction follows exactly Algorithm 2 of Finley et al. (2019), which we reproduce in the context of
occupancy models in the following.

The posterior predictive distribution for the spatial process at unobserved locations (w0) is

w(s0) | · ∼ Normal(B−1[S−1
β (z̃ − Xβ)],B−1). (18)

Our predictive algorithm thus takes the following steps for each posterior sample q:

1. Sample w(q)
0,j from Equation (18), substituting in the current values at sample q of the spatal parameters

and latent spatial process at the observed locations.
2. Compute the latent occurrence probability ψ(q)(sj) as logit−1(x⊤

0,jβ(q) + w(q)(s0,j)).
3. Sample the latent occurrence from z

(q)
j ∼ Bernoulli(ψ(q)(sj)).
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4 Multi-species occupancy model (msPGOcc)
4.1 Model description
Let zi,j be the true presence (1) or absence (0) of a species i at site j, with j = 1, . . . , J and i = 1, . . . , N .
We assume the latent occurrence process arises from a Bernoulli process following

zi,j ∼ Bernoulli(ψi,j),
logit(ψi,j) = x⊤

j βi,
(19)

where ψi,j is the probability of occurrence of species i at site j, which is a function of site-specific covariates
X and a vector of species-specific regression coefficients (βi). The regression coefficients in multi-species
occupancy models are envisioned as random effects arising from a common community-level distribution:

βi ∼ Normal(µβ,T β), (20)

where µβ is a vector of community-level mean effects for each occurrence covariate effect (including the
intercept) and T β is a diagonal matrix with diagonal elements τ 2

β that represent the variability of each
occurrence covariate effect among species in the community.

We do not directly observe zi,j , but rather we observe an imperfect representation of the latent occurrence
process. Let yi,j,k be the observed detection (1) or nondetection (0) of a species i of interest at site j during
replicate k for each of k = 1, . . . ,Kj replicates at each site j. We envision the detection-nondetection data as
arising from a Bernoulli process conditional on the true latent occurrence process:

yi,j,k ∼ Bernoulli(pi,j,kzi,j),
logit(pi,j,k) = v⊤

i,j,kαi,
(21)

where pi,j,k is the probability of detecting species i at site j during replicate k (given it is present at site
j), which is a function of site and replicate-specific covariates V and a vector of species-specific regression
coefficients (αi). Similarly to the occurrence regression coefficients, the species-specific detection coefficients
are envisioned as random effects arising from a common community-level distribution:

αi ∼ Normal(µα,T α), (22)

where µα is a vector of community-level mean effects for each detection covariate effect (including the
intercept) and T α is a diagonal matrix with diagonal elements τ 2

α that represent the variability of each
detection covariate effect among species in the community.

We assign multivariate normal priors for the community-level occurrence (µβ) and detection (µα) means, and
assign indepdent inverse-Gamma priors on the community-level occurrence (τ2

β) and detection (τ2
α) variance

parameters. Analogous to the single-species occupancy model, we implement the model using Pólya-Gamma
data augmentation which induces fully Gibbs updates for all parameters. We specify Pólya-Gamma data
augmented variables for each species (ωi,j,β , ωi,j,k,α), which follow the same scheme as that for the single-
species model in Equation (3), except all parameters in the equation are now indexed by i for each species.
The full joint posterior distribution thus takes the following form:
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[α,β, z,ωβ ,ωα,µβ ,µα, τ
2
β , τ

2
α | y] ∝

N∏
i=1

J∏
j=1

Kj∏
k=1

Bernoulli(yi,j,k | pi,j,kzi,j)×

Bernoulli(zi,j | ψi,j)×
PG(ωi,j,β | 1, 0)×
PG(ωi,j,k,α | 1, 0)×
Normal(β | µβ,T β)×
Normal(α | µα,T α)
Normal(µβ | µ0β ,Σβ)
Normal(µα | µ0α,Σα)
nβ∏

r=1
IG(τ2

r,β | ar,β , br,β)

nα∏
t=1

IG(τ2
t,α | at,α, bt,α),

where r and t index across the number of occurrence and detection regression parameters, respectively.

4.2 MCMC sampler
The Pólya-Gamma data augmentation induces a Gibbs update for all parameters in the multi-species
occupancy model. For each iteration, we first sample all community-level parameters followed by species level
parameters. We first sample the community-level regression coefficients µβ from

µβ | · ∼ Normal([Σ−1
β +NT −1

β ]−1
[ N∑

i=1
(T −1

β βi) + Σ−1
β µ0β

]
, [Σ−1

β +NT −1
β ]−1). (23)

Similarly, we next sample the community-level regression coefficients µα from

µα | · ∼ Normal([Σ−1
α +NT −1

α ]−1
[ N∑

i=1
(T −1

α αi) + Σ−1
α µ0α

]
, [Σ−1

α +NT −1
α ]−1). (24)

Next, we sample the community-level occurrence variance parameter for each regression coefficient, τ2
r,β , from

the following inverse-Gamma full conditional:

τ2
r,β | · ∼ IG(ar,β + N

2 , br,β +
∑N

i=1(βi,r − µβr
)2

2 ). (25)

Similarly, we next sample the community-level detection variance parameter for each regression coefficient:

τ2
t,α | · ∼ IG(at,α + N

2 , at,α +
∑N

i=1(αi,t − µαt
)2

2 ). (26)

We now sample all species level coefficients. The coefficients are sampled one at a time for each species. First,
we sample the occurrence and detection auxiliary variables for species i from

ωi,j,β | · ∼ PG(1,x⊤
j βi),

ωi,j,k,α | · ∼ PG(1,v⊤
j,kαi).

(27)
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The occurrence regression coefficients for species i are subsequently drawn from the following multivariate
Normal full conditional distribution

βi | · ∼ Normal
(

[T −1
β + X⊤SβX]−1[X⊤(zi − 0.51J) + T −1

β µβ], [T −1
β + X⊤SβX]−1

)
, (28)

where Sβ is a diagonal J × J matrix with diagonal entries equal to the latent Pólya-Gamma variable values
for species i. Similarly, we sample the detection regression coefficients for species i from

αi | · ∼ Normal
(

[T −1
α + Ṽ

⊤
SαṼ ]−1[Ṽ ⊤(ỹi − 0.51J∗

i
) + T −1

α µα], [T −1
α + Ṽ

⊤
SαṼ ]−1

)
. (29)

The species-level detection regression coefficients αi are only informed by the locations where zi,j = 1, since
we assume no false positive detections in the standard occupancy model. We define J∗

i as the total number of
sites at the current iteration of the MCMC with zi,j = 1. Sα is a diagonal matrix with diagonal entries equal
to the latent Pólya-Gamma variable values (ωi,1,1,α, . . . , ωi,J∗

i
,KJ∗

i
,α). The matrix Ṽ is the matrix of detection

covariates associated with the sites where zi,j = 1. Similarly, ỹi is a vector of stacked detection-nondetection
data values at the entries associated with zi,j = 1.

Finally, we sample the latent occurrence states for each species. zi,j is set to 1 for all sites where there is at
least one detection of species i, and so we only need to sample zi,j at sites where there are no detections.
Thus, for all locations with no detections of the species i, we sample zi,j according to

zi,j | · ∼ Bernoulli
(

ψi,j

∏Kj

k=1(1 − pi,j,k)
1 − ψi,j + ψi,j

∏Kj

k=1(1 − pi,j,k)

)
. (30)

Note the full conditional for zi,j is exactly the same as that for the single-species occupancy model in Equation
(7), except all values are now additionally indexed by species (i).

4.3 Prediction
Prediction for a nonspatial multi-species occupancy model is a simple composition sampling problem exactly
analogous to the single-species model. Given a set of occurrence covariates at a set of non-sampled locations
(X0), we can derive the latent occurrence probability and the latent occurrence state at each non-sampled
site j = 1, . . . , J0 for each species i for each posterior sample q of the MCMC sampler following

logit(ψ(q)
i,j ) = x⊤

0,jβ
(q)
i ,

z
(q)
i,j ∼ Bernoulli(ψ(q)

i,j ).
(31)

5 Multi-species spatial occupancy model (spMsPGOcc)
5.1 Gaussian Process formulation
5.1.1 Model description

We extend the previous multi-species occupancy model to incorporate a distinct spatial Gaussian Process
(GP) for each species that accounts for unexplained spatial variation in each individual species occurrence
across a spatial region. Occurrence probability for species i at site j with coordinates sj , ψi(sj), now takes
the form

logit(ψi(sj)) = x⊤
j βi + wi(sj), (32)
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where the species-specific regression coefficients βi follow the community-level distribution in Equation (20),
and wi(sj) is a realization from a zero-mean spatial GP, i.e.,

wi(s) ∼ Normal(0,Σi(s, s′,θi)). (33)

We define Σi(s, s′,θi) as a J × J covariance matrix that is a function of the distances between any pair of
site coordinates s and s′ and a set of parameters (θi) that govern the spatial process. The vector θi is equal
to θi = {σ2

i , ϕi, νi}, where σ2
i is a spatial variance parameter for species i, ϕi is a spatial decay parameter for

species i, and νi is a spatial smoothness parameter for species i. νi is only specified when using a Matern
correlation function.

Note that we estimate a distinct parameter vector θi for each species and assume the spatial processes are
independent of each other. This is a naive approach for incorporating spatial processes in a multi-species
occupancy model, as we do not leverage the potential correlation in spatial processes among species in a
linear model of coregionalization approach (Gelfand et al. 2004). Despite the simplicity of the approach, such
models have been shown to yield improved insight in species distributions across broad locations (Wright et al.
2021), and the Bayesian shrinkage component of the multi-species model (Equation (20)) will make estimates
in a multi-species spatial occupancy model more precise than a single-species spatial occupancy model, in
particular for rare species. In future implementations of spOccupancy we plan to implement multi-species
occupancy models in a more rich inferential framework that leverages between species correlations in spatial
processes and non-spatial components, similar to the models of Tobler et al. (2019) and Taylor-Rodriguez et
al. (2019).

The detection portion of the multi-species spatial occupancy model remains unchanged from the non-spatial
multi-species occupancy model and follows Equations (21) and (22). Formulation of Pólya-Gamma latent
variables is also exactly analogous to the nonspatial model (Equation (3)), with all parameters including an
index for species (i) and all references to ψi(sj) now including the latent spatial random effects in addition
to the site-level covariates.

Following standard recommendations for point-referenced spatial data (Banerjee, Carlin, and Gelfand 2003),
we assign an inverse-Gamma prior to the spatial variance parameter for each species and uniform priors to
the spatial decay and spatial smoothness parameters for each species. Our full joint posterior distribution
takes the following form, where IG stands for the inverse-Gamma distribution:
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[α,β, z,ωβ ,ωα,µβ ,µα, τ
2
β , τ

2
α | y] ∝

N∏
i=1

J∏
j=1

Kj∏
k=1

Bernoulli(yi,j,k | pi,j,kzi,j)×

Bernoulli(zi,j | ψi,j)×
PG(ωi,j,β | 1, 0)×
PG(ωi,j,k,α | 1, 0)×
Normal(w | 0,Σ(s, s′,θ))×
Normal(β | µβ,T β)×
Normal(α | µα,T α)
Normal(µβ | µ0β ,Σβ)
Normal(µα | µ0α,Σα)
nβ∏

r=1
IG(τ2

r,β | ar,β , br,β)

nα∏
t=1

IG(τ2
t,α | at,α, bt,α)

IG(σ2
i | aσ2,i, bσ2,i)×

Uniform(ϕi | aϕ,i, bϕ,i)×
Uniform(νi | aν,i, bν,i)

5.1.2 MCMC sampler

The Pólya-Gamma data augmentation induces a Gibbs update for all parameters in the multi-species spatial
occupancy model except the spatial range parameters (ϕi) and the spatial smoothness parameters νi if
specified. For each iteration, we first sample all community-level parameters followed by species level
parameters. Full conditional distributions for all community-level parameters are exactly the same as those
for the nonspatial multi-species model. See Equations (23)-(26).

The species-level coefficients are sampled one at a time for each species. First, we sample the occurrence and
detection auxiliary variables for species i from

ωi,j,β | · ∼ PG(1,x⊤
j βi + wi(sj)),

ωi,j,k,α | · ∼ PG(1,v⊤
j,kαi).

(34)

The occurrence regression coefficients for species i are subsequently drawn from the following multivariate
normal full conditional distribution

βi | · ∼ Normal
(

[T −1
β + X⊤SβX]−1[X⊤(zi − 0.51J − Sβwi(sj)) + T −1

β µβ], [T −1
β + X⊤SβX]−1

)
, (35)

where Sβ is a diagonal J × J matrix with diagonal entries equal to the latent Pólya-Gamma variable values
for species i. The full conditional for the species-level detection regression coefficients is the same as in the
non-spatial model shown in Equation (29).

When specifying an inverse-Gamma prior, the spatial variance parameter for species i, σ2
i , is sampled via a

Gibbs update of the form

σ2
i | · ∼ IG

(J
2 + aσ2,i,

wi(sj)⊤R−1
i wi(sj)

2 + bσ2,i

)
, (36)
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where R is a J × J spatial correlation matrix. The full conditional distributions for the species-specific
spatial range parameters, ϕi, and spatial smoothness parameters, νi are not available in closed form, and so
they are updated using random walk Metropolis updates following the same procedure as described for the
single-species spatial occupancy models. When a uniform prior is used for the species-specific spatial variance
parameters, σ2

i , these are also updated using random walk metropolis updates as before.

The Pólya-Gamma data augmentation scheme induces a Gibbs update for the latent spatial Gaussian process
for each species, which is updated according to

wi(s) | · ∼ Normal
(

[Sβ + Σ−1
i ]−1[zi − 0.51J − SβXβi], [Sβ + Σ−1

i ]−1
)
. (37)

Finally, for all sites with no detections for a given species, the latent occurrence values zi,j are updated
following Equation (30).

5.1.3 Prediction

Because we assume independence between the spatial processes of the different species, prediction for the multi-
species spatial occupancy model is exactly analogous to prediction for the single-species spatial occupancy
model described in Section 3.1.3, except prediction is done for each species i using the species-specific values
for that species. See Section 3.1.3 for the algorithm, noting that for the multi-species model all values are
additionally indexed by species (i).

5.2 Nearest Neighbor Gaussian Process formulation
As with the single-species model, we also implement spMsPGOcc with an NNGP. Use of the NNGP leads to
even larger computational benefits for the multi-species occupancy models, as we now replace each of the
independent GPs for each of the N species with an independent NNGP.

5.2.1 Model description

The joint posterior distribution for the multi-species NNGP occupancy model is exactly the same as that of
the full GP multi-species model except the GP prior assigned to the latent spatial random effects wi(s) for
each species is replaced with an NNGP prior (Datta et al. 2016).

5.2.2 MCMC sampler and prediction

The full conditionals for all variables except the spatial variance parameters σ2
i and the latent spatial process

wi(s) follow the same full conditionals as described in the full GP multi-species spatial occupancy model.
The full conditionals for σ2

i and wi(s) follow exactly those described for the single-species NNGP model in
Section 3.2.2, where all parameters are now indexed by each species i. Prediction is also exactly analogous to
that described for the single-species NNGP model in Section 3.2.3.

6 Single-species integrated occupancy model (intPGOcc)
Data integration is a model-based approach that leverages multiple data sources to provide inference and
prediction on some latent process of interest (Miller et al. 2019). Data integration is particularly relevant
in ecology as many data sources are often collected to study a single ecological phenomenon, with each
data source having advantages and disadvantages. Often, multiple detection-nondetection data sources are
available to study the occurrence and distribution of some species of interest. For example, both human
point count surveys and autonomous recording units could be used to monitor a bird species of conservation
concern (Doser et al. 2021). Different types of data have different sources of observation error, which should
be explicitly incorporated into a model to avoid attributing any variation in detection probability to the true
ecological process. Here we describe single-species integrated occupancy models, which combine multiple
sources of detection-nondetection data (which may or may not be replicated) in a single hierarchical modeling
framework.
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6.1 Model description
The biological process model is exactly the same as single-species occupancy models, which we now describe
again for clarity. Let zj be the presence or absence of a species at site j, with j = 1, . . . , J . We assume this
latent occurrence variables arises from a Bernoulli process following

zj ∼ Bernoulli(ψj),
logit(ψj) = x⊤

j β,
(38)

where ψj is the probability of occurrence at site j, which is a function of site-specific covariates X and a
vector of regression coefficients (β).

We do not directly observe zj , but rather we observe an imperfect representation of the latent occurrence
process. In integrated models, we have r = 1, . . . , R distinct sources of data that are all imperfect repre-
sentations of a single, shared occurrence process. Let yr,a,k be the observed detection (1) or nondetection
(0) of a species of interest in data set r at site a during replicate k. Because different data sources have
different variables influencing the observation process, we envision a separate detection model for each data
source that is conditional on a single, shared ecological process described by Equation (38). We envision the
detection-nondetection data from source r as arising from a Bernoulli process conditional on the true latent
occurrence process:

yr,a,k ∼ Bernoulli(pr,a,kzj[a]),
logit(pr,a,k) = v⊤

r,a,kαr,
(39)

where pr,a,k is the probability of detecting a species at site a during replicate k (given it is present at site a)
for data source r, which is a function of site, replicate, and data source specific covariates V r and a vector of
regression coefficients specific to each data source (αr). Note that zj[a] is the true occurrence status at site j
corresponding to the ath data source site in the given data set r. Each data source may be available at all J
sites in the region of interest or at a subset of the J sites. Additionally, data sources can overlap in the sites
they sample, or they can be obtained at distinct sites within all J sites of interest in the overall region.

We assume multivariate normal priors for the occurrence (β) and data-set specific detection (α) regression
coefficients to complete the Bayesian specification of a single-species occupancy model. Pólya-Gamma data
augmentation is implemented analgoous to previous models, where there is a single set of occurrence auxiliary
variables (ωβ) and a distinct set of detection auxiliary variables for each data source (ωr,α).

In short, the integrated occupancy model has an identical process model to the single-species occupancy
model, and has a distinct detection model for each data source that are all conditional on the same shared
ecological process (species occurrence). Our full joint posterior takes the same form as that of a single-species
occupancy model, except a separate conditional likelihood is specified for each data source which is dependent
on its own unique set of detection regression cofficients and Pólya-Gamma auxiliary variables.

6.2 MCMC sampler
The Pólya-Gamma data augmentation induces a Gibbs update for all parameters in the single-species
integrated occupancy model. We first sample the occurrence and detection auxiliary variables from

ωj,β | · ∼ PG(1,x⊤
j β),

ωr,j,k,α | · ∼ PG(1,v⊤
r,j,kαr),

(40)

The occurrence regression coefficients are sampled from the same full conditional as that in the single-species
occupancy model in Equation (5).
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The detection regression coefficients for a given data source r follows Equation (6), with all parameters now
indexed by r.

Finally, zj is set to 1 for all sites where there is at least one detection from one more more data sources,
and thus we only need to sample zj at sites where there are no detections. Thus, for all locations with no
detections, we sample zj according to

zj | · ∼ Bernoulli
(

ψj

∏
∀a=j(1 − pr,a,j,k)

1 − ψj + ψj

∏
∀a=j(1 − pr,a,j,k)

)
, (41)

where the product occurs over all the sites in the R data sources that correspond the jth location.

6.3 Prediction
Integrated occupancy models have an identical ecological process model to single-species occupancy models,
and so out-of-sample prediction follows the same approach. See Section 2.3 for details.

7 Single-species integrated spatial occupancy model (spIntPGOcc)
Single-species integrated spatial occupancy models are identical to integrated occupancy models except the
ecological process model now incorporates a spatially-structured random effect following the discussion in
Section 3. All details for the single-species integrated spatial occupancy model have already been presented.
Here we present the sections to consult for necessary details for each portion of the single-species integrated
spatial occupancy model.

7.1 Gaussian Process formulation
7.1.1 Model description

For the ecological process model, see Section 3.1.1. For the observation model for each data source, see
Section 6.1.

7.1.2 MCMC sampler

For the ecological process parameters, see Section 3.1.2. For the observation process parameters, see Section
6.2.

7.1.3 Prediction

See Section 3.1.3.

7.2 Nearest Neighbor Gaussian Process formulation
7.2.1 Model description

For the ecological process model, see Section 3.2.1. For the observation model for each data source, see
Section 6.1.

7.2.2 MCMC sampler

For the ecological process parameters, see Section 3.2.2. For the observation process parameters, see Section
6.2.

7.2.3 Prediction

See Section 3.2.3.
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