Function for Fitting a Latent Factor Joint Species Distribution Model
lfJSDM.Rd
Function for fitting a joint species distribution model with species correlations. This model does not explicitly account for imperfect detection (see lfMsPGOcc()
). We use Polya-gamma latent variables and a factor modeling approach.
Usage
lfJSDM(formula, data, inits, priors, n.factors,
n.samples, n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)
Arguments
- formula
a symbolic description of the model to be fit for the model using R's model syntax. Only right-hand side of formula is specified. See example below. Random intercepts are allowed using lme4 syntax (Bates et al. 2015).
- data
a list containing data necessary for model fitting. Valid tags are
y
,covs
, andcoords
.y
is a two-dimensional array with first dimension equal to the number of species and second dimension equal to the number of sites. Note how this differs from otherspOccupancy
functions in thaty
does not have any replicate surveys. This is becauselfJSDM
does not account for imperfect detection.covs
is a matrix or data frame containing the variables used in the model, with \(J\) rows for each column (variable).coords
is a matrix with \(J\) rows and 2 columns consisting of the spatial coordinates of each site in the data. Note thatspOccupancy
assumes coordinates are specified in a projected coordinate system.- inits
a list with each tag corresponding to a parameter name. Valid tags are
beta.comm
,beta
,tau.sq.beta
,sigma.sq.psi
,lambda
. The value portion of each tag is the parameter's initial value. Seepriors
description for definition of each parameter name. Additionally, the tagfix
can be set toTRUE
to fix the starting values across all chains. Iffix
is not specified (the default), starting values are varied randomly across chains.- priors
a list with each tag corresponding to a parameter name. Valid tags are
beta.comm.normal
,tau.sq.beta.ig
, andsigma.sq.psi.ig
. Community-level (beta.comm
) regression coefficients are assumed to follow a normal distribution. The hyperparameters of the normal distribution are passed as a list of length two with the first and second elements corresponding to the mean and variance of the normal distribution, which are each specified as vectors of length equal to the number of coefficients to be estimated or of length one if priors are the same for all coefficients. If not specified, prior means are set to 0 and prior variances set to 2.72. Community-level variance parameters (tau.sq.beta
) are assumed to follow an inverse Gamma distribution. The hyperparameters of the inverse gamma distribution are passed as a list of length two with the first and second elements corresponding to the shape and scale parameters, which are each specified as vectors of length equal to the number of coefficients to be estimated or a single value if all parameters are assigned the same prior. If not specified, prior shape and scale parameters are set to 0.1. The factor model fitsn.factors
independent latent factors. The priors for the factor loadings matrixlambda
are fixed following standard approaches to ensure parameter identifiability. The upper triangular elements of theN x n.factors
matrix are fixed at 0 and the diagonal elements are fixed at 1. The lower triangular elements are assigned a standard normal prior (i.e., mean 0 and variance 1).sigma.sq.psi
is the random effect variance for any random effects, and is assumed to follow an inverse Gamma distribution. The hyperparameters of the inverse-Gamma distribution are passed as a list of length two with first and second elements corresponding to the shape and scale parameters, respectively, which are each specified as vectors of length equal to the number of random intercepts or of length one if priors are the same for all random effect variances.- n.factors
the number of factors to use in the latent factor model approach. Typically, the number of factors is set to be small (e.g., 4-5) relative to the total number of species in the community, which will lead to substantial decreases in computation time. However, the value can be anywhere between 0 and N (the number of species in the community). When set to 0, the model assumes there are no residual species correlations, which is equivalent to the
msPGOcc()
function but without imperfect detection.- n.samples
the number of posterior samples to collect in each chain.
- n.omp.threads
a positive integer indicating the number of threads to use for SMP parallel processing within chains. This will have no impact on model run times for non-spatial models. The package must be compiled for OpenMP support. For most Intel-based machines, we recommend setting
n.omp.threads
up to the number of hypterthreaded cores. Note,n.omp.threads
> 1 might not work on some systems.- verbose
if
TRUE
, messages about data preparation, model specification, and progress of the sampler are printed to the screen. Otherwise, no messages are printed.- n.report
the interval to report MCMC progress.
- n.burn
the number of samples out of the total
n.samples
to discard as burn-in for each chain. By default, the first 10% of samples is discarded.- n.thin
the thinning interval for collection of MCMC samples. The thinning occurs after the
n.burn
samples are discarded. Default value is set to 1.- n.chains
the number of chains to run in sequence.
- k.fold
specifies the number of k folds for cross-validation. If not specified as an argument, then cross-validation is not performed and
k.fold.threads
andk.fold.seed
are ignored. In k-fold cross-validation, the data specified indata
is randomly partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsamples are used to fit the model and the remaining k samples are used for prediction. The cross-validation process is repeated k times (the folds). As a scoring rule, we use the model deviance as described in Hooten and Hobbs (2015). Cross-validation is performed after the full model is fit using all the data. Cross-validation results are reported in thek.fold.deviance
object in the return list.- k.fold.threads
number of threads to use for cross-validation. If
k.fold.threads > 1
parallel processing is accomplished using the foreach and doParallel packages. Ignored ifk.fold
is not specified.- k.fold.seed
seed used to split data set into
k.fold
parts for k-fold cross-validation. Ignored ifk.fold
is not specified.- k.fold.only
a logical value indicating whether to only perform cross-validation (
TRUE
) or perform cross-validation after fitting the full model (FALSE
). Default value isFALSE
.- ...
currently no additional arguments
Note
Some of the underlying code used for generating random numbers from the Polya-Gamma distribution is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.lib.utexas.edu/handle/2152/21842.
References
Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.
Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01 .
Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. Ecological monographs, 85(1), 3-28.
Author
Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu
Value
An object of class lfJSDM
that is a list comprised of:
- beta.comm.samples
a
coda
object of posterior samples for the community level occurrence regression coefficients.- tau.sq.beta.samples
a
coda
object of posterior samples for the occurrence community variance parameters.- beta.samples
a
coda
object of posterior samples for the species level occurrence regression coefficients.- lambda.samples
a
coda
object of posterior samples for the latent factor loadings.- psi.samples
a three-dimensional array of posterior samples for the latent probability of occurrence/detection values for each species.
- sigma.sq.psi.samples
a
coda
object of posterior samples for variances of random intercepts included in the occurrence portion of the model. Only included if random intercepts are specified inocc.formula
.- w.samples
a three-dimensional array of posterior samples for the latent effects for each latent factor.
- beta.star.samples
a
coda
object of posterior samples for the occurrence random effects. Only included if random intercepts are specified inocc.formula
.- like.samples
a three-dimensional array of posterior samples for the likelihood value associated with each site and species. Used for calculating WAIC.
- rhat
a list of Gelman-Rubin diagnostic values for some of the model parameters.
- ESS
a list of effective sample sizes for some of the model parameters.
- run.time
MCMC sampler execution time reported using
proc.time()
.- k.fold.deviance
vector of scoring rules (deviance) from k-fold cross-validation. A separate value is reported for each species. Only included if
k.fold
is specified in function call.
The return object will include additional objects used for
subsequent prediction and/or model fit evaluation. Note that detection probability
estimated values are not included in the model object, but can be extracted
using fitted()
.
Examples
set.seed(400)
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- rep(1, J)
N <- 10
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.6, 1.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.2, 1.7)
# Detection
# Fix this to be constant and really close to 1.
alpha.mean <- c(9)
tau.sq.alpha <- c(0.05)
p.det <- length(alpha.mean)
# Random effects
# Include a single random effect
psi.RE <- list(levels = c(20),
sigma.sq.psi = c(2))
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
# Factor model
factor.model <- TRUE
n.factors <- 4
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = FALSE,
factor.model = TRUE, n.factors = 4)
X <- dat$X
y <- dat$y
X.re <- dat$X.re
coords <- dat$coords
occ.covs <- cbind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2', 'occ.re.1')
data.list <- list(y = y[, , 1],
covs = occ.covs,
coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1))
inits.list <- list(beta.comm = 0, beta = 0, tau.sq.beta = 1)
# Note that this is just a test case and more iterations/chains may need to
# be run to ensure convergence.
out <- lfJSDM(formula = ~ occ.cov.1 + occ.cov.2 + (1 | occ.re.1),
data = data.list,
inits = inits.list,
priors = prior.list,
n.factors = 4,
n.samples = 1000,
n.report = 500,
n.burn = 500,
n.thin = 2,
n.chains = 1)
#> ----------------------------------------
#> Preparing to run the model
#> ----------------------------------------
#> No prior specified for sigma.sq.psi.ig.
#> Setting prior shape to 0.1 and prior scale to 0.1
#> lambda is not specified in initial values.
#> Setting initial values of the lower triangle to random values from a standard normal
#> sigma.sq.psi is not specified in initial values.
#> Setting initial values to random values between 0.5 and 10
#> ----------------------------------------
#> Model description
#> ----------------------------------------
#> Latent Factor JSDM with Polya-Gamma latent
#> variable fit with 100 sites and 10 species.
#>
#> Samples per Chain: 1000
#> Burn-in: 500
#> Thinning Rate: 2
#> Number of Chains: 1
#> Total Posterior Samples: 250
#>
#> Using 4 latent factors.
#>
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#>
#> ----------------------------------------
#> Chain 1
#> ----------------------------------------
#> Sampling ...
#> Sampled: 500 of 1000, 50.00%
#> -------------------------------------------------
#> Sampled: 1000 of 1000, 100.00%
summary(out)
#>
#> Call:
#> lfJSDM(formula = ~occ.cov.1 + occ.cov.2 + (1 | occ.re.1), data = data.list,
#> inits = inits.list, priors = prior.list, n.factors = 4, n.samples = 1000,
#> n.report = 500, n.burn = 500, n.thin = 2, n.chains = 1)
#>
#> Samples per Chain: 1000
#> Burn-in: 500
#> Thinning Rate: 2
#> Number of Chains: 1
#> Total Posterior Samples: 250
#> Run Time (min): 0.0076
#>
#> ----------------------------------------
#> Community Level
#> ----------------------------------------
#> Means (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.2801 0.2878 -0.2950 0.2883 0.8707 NA 146
#> occ.cov.1 0.1048 0.2627 -0.4428 0.0948 0.6450 NA 232
#> occ.cov.2 1.5843 0.6990 0.1853 1.6339 2.8961 NA 250
#>
#> Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.5404 0.4272 0.0681 0.4367 1.7609 NA 108
#> occ.cov.1 0.6966 0.6460 0.1429 0.5513 1.7996 NA 199
#> occ.cov.2 4.9709 3.8533 1.5687 3.8282 13.4447 NA 162
#>
#> Random Effect Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> occ.re.1 1.6371 0.6085 0.8384 1.5006 3.1104 NA 29
#>
#> ----------------------------------------
#> Species Level
#> ----------------------------------------
#> Estimates (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept)-sp1 -0.2324 0.4334 -1.2248 -0.2011 0.5124 NA 110
#> (Intercept)-sp2 0.3059 0.3808 -0.4793 0.3117 0.9789 NA 126
#> (Intercept)-sp3 1.0704 0.4693 0.1823 1.0918 1.9678 NA 73
#> (Intercept)-sp4 0.3949 0.4058 -0.4512 0.4054 1.1424 NA 92
#> (Intercept)-sp5 0.1494 0.4439 -0.8134 0.1653 0.9682 NA 84
#> (Intercept)-sp6 -0.5354 0.4446 -1.5325 -0.5592 0.2984 NA 77
#> (Intercept)-sp7 0.9330 0.4472 0.2408 0.8908 1.8487 NA 97
#> (Intercept)-sp8 0.1377 0.3391 -0.5158 0.1469 0.7966 NA 109
#> (Intercept)-sp9 0.6444 0.4167 -0.0811 0.6569 1.4597 NA 89
#> (Intercept)-sp10 -0.0856 0.4024 -0.9814 -0.0604 0.6641 NA 107
#> occ.cov.1-sp1 -0.2008 0.3675 -0.9454 -0.1859 0.4552 NA 133
#> occ.cov.1-sp2 0.8928 0.3647 0.2063 0.9114 1.5644 NA 108
#> occ.cov.1-sp3 -0.7106 0.3452 -1.4673 -0.6921 -0.0820 NA 121
#> occ.cov.1-sp4 0.3865 0.3492 -0.2822 0.4096 1.0948 NA 198
#> occ.cov.1-sp5 -0.5076 0.3712 -1.2663 -0.4905 0.1850 NA 123
#> occ.cov.1-sp6 0.6789 0.3494 0.0430 0.6902 1.3157 NA 129
#> occ.cov.1-sp7 0.0330 0.3418 -0.6220 0.0257 0.7900 NA 151
#> occ.cov.1-sp8 -0.0691 0.3505 -0.7810 -0.0755 0.6563 NA 91
#> occ.cov.1-sp9 0.9844 0.3952 0.3560 0.9386 1.9702 NA 73
#> occ.cov.1-sp10 -0.4251 0.3425 -1.0994 -0.4207 0.1972 NA 127
#> occ.cov.2-sp1 4.2894 0.8212 2.7735 4.3274 5.8888 NA 48
#> occ.cov.2-sp2 -2.3781 0.5228 -3.4272 -2.3371 -1.4238 NA 49
#> occ.cov.2-sp3 1.5276 0.3744 0.8639 1.5246 2.2499 NA 100
#> occ.cov.2-sp4 2.3885 0.5488 1.4446 2.3456 3.6126 NA 66
#> occ.cov.2-sp5 3.2895 0.8761 1.9846 3.1851 5.3112 NA 32
#> occ.cov.2-sp6 3.1740 0.7005 2.0038 3.0885 4.5845 NA 39
#> occ.cov.2-sp7 3.2961 0.6512 2.2480 3.2359 4.6137 NA 46
#> occ.cov.2-sp8 0.5239 0.3688 -0.1560 0.5004 1.2553 NA 79
#> occ.cov.2-sp9 1.7451 0.4305 0.9624 1.7316 2.6399 NA 95
#> occ.cov.2-sp10 1.2538 0.3957 0.4271 1.2553 1.9874 NA 98