Function for prediction at new locations for multi-season multi-species spatial occupancy models
predict.stMsPGOcc.Rd
The function predict
collects posterior predictive samples for a set of new locations given an object of class `stMsPGOcc`. Prediction is possible for both the latent occupancy state as well as detection. Predictions are currently only possible for sampled primary time periods.
Usage
# S3 method for stMsPGOcc
predict(object, X.0, coords.0, t.cols, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
ignore.RE = FALSE, type = 'occupancy', grid.index.0, ...)
Arguments
- object
an object of class stMsPGOcc
- X.0
the design matrix of covariates at the prediction locations. This should be a three-dimensional array, with dimensions corresponding to site, primary time period, and covariate, respectively. Note that the first covariate should consist of all 1s for the intercept if an intercept is included in the model. If random effects are included in the occupancy (or detection if
type = 'detection'
) portion of the model, the levels of the random effects at the new locations/time periods should be included as an element of the three-dimensional array. The ordering of the levels should match the ordering used to fit the data instMsPGOcc
. The covariates should be organized in the same order as they were specified in the corresponding formula argument ofstMsPGOcc
. Names of the third dimension (covariates) of any random effects in X.0 must match the name of the random effects used to fit the model, if specified in the corresponding formula argument ofstMsPGOcc
. See example below.- coords.0
the spatial coordinates corresponding to
X.0
. Note thatspOccupancy
assumes coordinates are specified in a projected coordinate system.- t.cols
an indexing vector used to denote which primary time periods are contained in the design matrix of covariates at the prediction locations (
X.0
). The values should denote the specific primary time periods used to fit the model. The values should indicate the columns indata$y
used to fit the model for which prediction is desired. See example below.- n.omp.threads
a positive integer indicating the number of threads to use for SMP parallel processing. The package must be compiled for OpenMP support. For most Intel-based machines, we recommend setting
n.omp.threads
up to the number of hyperthreaded cores. Note,n.omp.threads
> 1 might not work on some systems.- verbose
if
TRUE
, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.- ignore.RE
logical value that specifies whether or not to remove random unstructured occurrence (or detection if
type = 'detection'
) effects from the subsequent predictions. IfTRUE
, random effects will be included. IfFALSE
, unstructured random effects will be set to 0 and predictions will only be generated from the fixed effects, the spatial random effects, and AR(1) random effects if the model was fit withar1 = TRUE
.- n.report
the interval to report sampling progress.
- type
a quoted keyword indicating what type of prediction to produce. Valid keywords are 'occupancy' to predict latent occupancy probability and latent occupancy values (this is the default), or 'detection' to predict detection probability given new values of detection covariates.
- grid.index.0
an indexing vector used to specify how each row in
X.0
corresponds to the coordinates specified incoords.0
. Only relevant if the spatial random effect was estimated at a higher spatial resolution (e.g., grid cells) than point locations.- ...
currently no additional arguments
Note
When ignore.RE = FALSE
, both sampled levels and non-sampled levels of unstructured random effects are supported for prediction. For sampled levels, the posterior distribution for the random intercept corresponding to that level of the random effect will be used in the prediction. For non-sampled levels, random values are drawn from a normal distribution using the posterior samples of the random effect variance, which results in fully propagated uncertainty in predictions with models that incorporate random effects.
Occurrence predictions at sites that are only sampled for a subset of the total number of primary time periods are obtained directly when fitting the model. See the psi.samples
and z.samples
portions of the output list from the model object of class stMsPGOcc
.
Author
Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu
Value
A list object of class predict.stMsPGOcc
. When type = 'occupancy'
, the list consists of:
- psi.0.samples
a four-dimensional object of posterior predictive samples for the latent occupancy probability values with dimensions corresponding to posterior predictive sample, species, site, and primary time period.
- z.0.samples
a three-dimensional object of posterior predictive samples for the latent occupancy values with dimensions corresponding to posterior predictive sample, species, site, and primary time period.
- w.0.samples
a three-dimensional array of posterior predictive samples for the latent spatial factors with dimensions correpsonding to MCMC sample, latent factor, and site.
When type = 'detection'
, the list consists of:
- p.0.samples
a four-dimensional object of posterior predictive samples for the detection probability values with dimensions corresponding to posterior predictive sample, site, and primary time period.
The return object will include additional objects used for standard extractor functions.
Examples
# Simulate Data -----------------------------------------------------------
set.seed(500)
J.x <- 8
J.y <- 8
J <- J.x * J.y
# Years sampled
n.time <- sample(3:10, J, replace = TRUE)
# n.time <- rep(10, J)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {
n.rep[j, 1:n.time[j]] <- sample(2:4, n.time[j], replace = TRUE)
# n.rep[j, 1:n.time[j]] <- rep(4, n.time[j])
}
N <- 7
# Community-level covariate effects
# Occurrence
beta.mean <- c(-3, -0.2, 0.5)
trend <- FALSE
sp.only <- 0
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 1.4)
# Detection
alpha.mean <- c(0, 1.2, -1.5)
tau.sq.alpha <- c(1, 0.5, 2.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- TRUE
svc.cols <- c(1)
p.svc <- length(svc.cols)
n.factors <- 3
phi <- runif(p.svc * n.factors, 3 / .9, 3 / .3)
factor.model <- TRUE
cov.model <- 'exponential'
ar1 <- TRUE
sigma.sq.t <- runif(N, 0.05, 1)
rho <- runif(N, 0.1, 1)
dat <- simTMsOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep, N = N,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, factor.model = factor.model,
svc.cols = svc.cols, n.factors = n.factors, phi = phi, sp = sp,
cov.model = cov.model, ar1 = ar1, sigma.sq.t = sigma.sq.t, rho = rho)
# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates
X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]
# Coordinates
coords <- dat$coords[-pred.indx, ]
coords.0 <- dat$coords[pred.indx, ]
occ.covs <- list(occ.cov.1 = X[, , 2],
occ.cov.2 = X[, , 3])
det.covs <- list(det.cov.1 = X.p[, , , 2],
det.cov.2 = X.p[, , , 3])
data.list <- list(y = y, occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
rho.unif = list(a = -1, b = 1),
sigma.sq.t.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3 / .9, b = 3 / .1))
z.init <- apply(y, c(1, 2, 3), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,
alpha = 0, tau.sq.beta = 1, tau.sq.alpha = 1,
rho = 0.5, sigma.sq.t = 0.5,
phi = 3 / .5, z = z.init)
# Tuning
tuning.list <- list(phi = 1, rho = 0.5)
# Number of batches
n.batch <- 5
# Batch length
batch.length <- 25
n.burn <- 25
n.thin <- 1
n.samples <- n.batch * batch.length
out <- stMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
ar1 = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.factors = n.factors,
cov.model = 'exponential',
priors = prior.list,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)
#> ----------------------------------------
#> Preparing to run the model
#> ----------------------------------------
#> lambda is not specified in initial values.
#> Setting initial values of the lower triangle to 0
#> ----------------------------------------
#> Building the neighbor list
#> ----------------------------------------
#> ----------------------------------------
#> Building the neighbors of neighbors list
#> ----------------------------------------
#> ----------------------------------------
#> Model description
#> ----------------------------------------
#> Spatial Factor NNGP Multi-season Multi-species Occupancy Model with Polya-Gamma latent
#> variables with 48 sites, 7 species, and 10 primary time periods.
#>
#> Samples per chain: 125 (5 batches of length 25)
#> Burn-in: 25
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 100
#>
#> Using the exponential spatial correlation model.
#>
#> Using 3 latent spatial factors.
#> Using 5 nearest neighbors.
#>
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#>
#> Adaptive Metropolis with target acceptance rate: 43.0
#> ----------------------------------------
#> Chain 1
#> ----------------------------------------
#> Sampling ...
#> Batch: 1 of 5, 20.00%
#> Latent Factor Parameter Acceptance Tuning
#> 1 phi 64.0 1.02020
#> 2 phi 56.0 1.02020
#> 3 phi 88.0 1.02020
#> Species Parameter Acceptance Tuning
#> 1 rho 96.0 0.51010
#> 2 rho 84.0 0.51010
#> 3 rho 72.0 0.51010
#> 4 rho 84.0 0.51010
#> 5 rho 68.0 0.51010
#> 6 rho 80.0 0.51010
#> 7 rho 68.0 0.51010
#> -------------------------------------------------
#> Batch: 2 of 5, 40.00%
#> Latent Factor Parameter Acceptance Tuning
#> 1 phi 76.0 1.03045
#> 2 phi 64.0 1.03045
#> 3 phi 76.0 1.03045
#> Species Parameter Acceptance Tuning
#> 1 rho 68.0 0.51523
#> 2 rho 64.0 0.51523
#> 3 rho 72.0 0.51523
#> 4 rho 68.0 0.51523
#> 5 rho 68.0 0.51523
#> 6 rho 80.0 0.51523
#> 7 rho 56.0 0.51523
#> -------------------------------------------------
#> Batch: 3 of 5, 60.00%
#> Latent Factor Parameter Acceptance Tuning
#> 1 phi 64.0 1.04081
#> 2 phi 76.0 1.04081
#> 3 phi 64.0 1.04081
#> Species Parameter Acceptance Tuning
#> 1 rho 76.0 0.52041
#> 2 rho 64.0 0.52041
#> 3 rho 80.0 0.52041
#> 4 rho 64.0 0.52041
#> 5 rho 64.0 0.52041
#> 6 rho 72.0 0.52041
#> 7 rho 88.0 0.52041
#> -------------------------------------------------
#> Batch: 4 of 5, 80.00%
#> Latent Factor Parameter Acceptance Tuning
#> 1 phi 68.0 1.05127
#> 2 phi 64.0 1.05127
#> 3 phi 72.0 1.05127
#> Species Parameter Acceptance Tuning
#> 1 rho 84.0 0.52564
#> 2 rho 68.0 0.52564
#> 3 rho 84.0 0.52564
#> 4 rho 80.0 0.52564
#> 5 rho 84.0 0.52564
#> 6 rho 84.0 0.52564
#> 7 rho 88.0 0.52564
#> -------------------------------------------------
#> Batch: 5 of 5, 100.00%
summary(out)
#>
#> Call:
#> stMsPGOcc(occ.formula = ~occ.cov.1 + occ.cov.2, det.formula = ~det.cov.1 +
#> det.cov.2, data = data.list, inits = inits.list, priors = prior.list,
#> tuning = tuning.list, cov.model = "exponential", NNGP = TRUE,
#> n.neighbors = 5, n.factors = n.factors, n.batch = n.batch,
#> batch.length = batch.length, accept.rate = 0.43, n.omp.threads = 1,
#> verbose = TRUE, ar1 = TRUE, n.report = 1, n.burn = n.burn,
#> n.thin = n.thin, n.chains = 1)
#>
#> Samples per Chain: 125
#> Burn-in: 25
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 100
#> Run Time (min): 0.0096
#>
#> ----------------------------------------
#> Community Level
#> ----------------------------------------
#> Occurrence Means (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) -3.1892 0.2887 -3.7924 -3.1763 -2.7037 NA 63
#> occ.cov.1 0.5453 0.2075 0.1863 0.5507 0.8574 NA 53
#> occ.cov.2 0.6311 0.4656 -0.2421 0.6613 1.4593 NA 29
#>
#> Occurrence Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.5167 0.5371 0.0378 0.3882 1.7570 NA 4
#> occ.cov.1 0.2772 0.3596 0.0484 0.1601 1.1616 NA 57
#> occ.cov.2 1.9535 2.1525 0.6564 1.4419 5.8089 NA 100
#>
#> Detection Means (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.2507 0.3312 -0.4508 0.2789 0.9027 NA 75
#> det.cov.1 0.9749 0.2797 0.5273 0.9632 1.4611 NA 26
#> det.cov.2 -1.0750 0.6589 -2.2953 -1.1260 0.5085 NA 67
#>
#> Detection Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.8170 0.5602 0.2469 0.6299 2.1294 NA 100
#> det.cov.1 0.4024 0.6038 0.0493 0.2339 1.7841 NA 39
#> det.cov.2 3.0619 2.7529 0.6539 2.0213 10.8417 NA 48
#>
#> ----------------------------------------
#> Species Level
#> ----------------------------------------
#> Occurrence (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept)-sp1 -3.2732 0.2725 -3.8563 -3.2514 -2.8637 NA 12
#> (Intercept)-sp2 -3.4062 0.2867 -3.9686 -3.3926 -2.9389 NA 15
#> (Intercept)-sp3 -3.5280 0.3194 -4.0536 -3.4960 -3.0327 NA 8
#> (Intercept)-sp4 -3.5353 0.4406 -4.4259 -3.4155 -2.8879 NA 3
#> (Intercept)-sp5 -3.6507 0.5085 -4.7056 -3.5912 -2.7773 NA 4
#> (Intercept)-sp6 -2.2058 0.5255 -3.0747 -2.1396 -1.4290 NA 3
#> (Intercept)-sp7 -3.5367 0.4063 -4.3694 -3.5598 -2.8187 NA 8
#> occ.cov.1-sp1 0.2959 0.2053 -0.0496 0.2767 0.7348 NA 33
#> occ.cov.1-sp2 0.6333 0.2046 0.2151 0.6382 1.0431 NA 21
#> occ.cov.1-sp3 0.4328 0.2332 -0.0225 0.4745 0.7934 NA 16
#> occ.cov.1-sp4 0.3326 0.2437 -0.1069 0.3048 0.7747 NA 22
#> occ.cov.1-sp5 0.7649 0.2278 0.4115 0.7424 1.3900 NA 25
#> occ.cov.1-sp6 0.3150 0.1559 0.0412 0.2901 0.6351 NA 38
#> occ.cov.1-sp7 1.1406 0.2881 0.6458 1.1385 1.6647 NA 6
#> occ.cov.2-sp1 1.5165 0.2945 0.9954 1.5136 2.0052 NA 12
#> occ.cov.2-sp2 2.0867 0.3505 1.4934 2.0570 2.8774 NA 6
#> occ.cov.2-sp3 -0.9705 0.2248 -1.3669 -0.9720 -0.5782 NA 12
#> occ.cov.2-sp4 -0.5996 0.2197 -0.9346 -0.6016 -0.1575 NA 28
#> occ.cov.2-sp5 0.0523 0.2414 -0.3904 0.0283 0.5249 NA 24
#> occ.cov.2-sp6 1.1954 0.2239 0.7906 1.2009 1.6189 NA 34
#> occ.cov.2-sp7 1.6138 0.2826 1.1430 1.5884 2.1132 NA 17
#>
#> Detection (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept)-sp1 1.1716 0.3574 0.5362 1.1188 2.0363 NA 26
#> (Intercept)-sp2 -0.8150 0.2390 -1.3591 -0.8086 -0.4188 NA 32
#> (Intercept)-sp3 -0.3361 0.4865 -1.1586 -0.3053 0.7124 NA 31
#> (Intercept)-sp4 0.8879 0.2652 0.4080 0.8444 1.4208 NA 36
#> (Intercept)-sp5 0.3327 0.4151 -0.4318 0.4155 0.9785 NA 29
#> (Intercept)-sp6 0.6418 0.1832 0.3151 0.6279 1.0091 NA 54
#> (Intercept)-sp7 -0.0815 0.3068 -0.6471 -0.0480 0.5140 NA 26
#> det.cov.1-sp1 1.4003 0.3841 0.8432 1.3468 2.2751 NA 18
#> det.cov.1-sp2 0.7737 0.1668 0.5019 0.7565 1.0919 NA 58
#> det.cov.1-sp3 0.3068 0.3539 -0.4080 0.3382 1.0260 NA 29
#> det.cov.1-sp4 0.8820 0.2229 0.4442 0.8871 1.2849 NA 100
#> det.cov.1-sp5 1.2319 0.3761 0.6722 1.1722 2.1349 NA 34
#> det.cov.1-sp6 0.9129 0.1651 0.5860 0.9241 1.2052 NA 49
#> det.cov.1-sp7 1.2019 0.2769 0.6709 1.2226 1.7079 NA 40
#> det.cov.2-sp1 -0.1934 0.2830 -0.7942 -0.1647 0.2583 NA 41
#> det.cov.2-sp2 -0.0412 0.1973 -0.4173 -0.0602 0.3463 NA 42
#> det.cov.2-sp3 -4.0881 0.9371 -6.3019 -4.0531 -2.2762 NA 7
#> det.cov.2-sp4 -1.0814 0.2844 -1.6566 -1.0761 -0.5852 NA 36
#> det.cov.2-sp5 -0.6675 0.3668 -1.3896 -0.6619 0.0690 NA 56
#> det.cov.2-sp6 -2.1844 0.3017 -2.7639 -2.1910 -1.6324 NA 22
#> det.cov.2-sp7 -1.8352 0.3555 -2.5222 -1.7941 -1.3038 NA 34
#>
#> ----------------------------------------
#> Spatio-temporal Covariance:
#> ----------------------------------------
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> phi-1 20.7204 8.3989 4.4904 22.0156 29.9821 NA 7
#> phi-2 12.2180 7.4260 3.8022 10.5779 27.2741 NA 5
#> phi-3 10.4698 7.3945 3.9123 7.2604 27.0794 NA 3
#> sigma.sq.t-sp1 1.6895 4.0730 0.0417 0.3006 17.6742 NA 11
#> sigma.sq.t-sp2 1.1140 2.0154 0.0711 0.4465 8.1345 NA 12
#> sigma.sq.t-sp3 0.4518 0.5307 0.0414 0.3031 1.9224 NA 26
#> sigma.sq.t-sp4 0.6883 0.6165 0.0921 0.5123 2.3636 NA 5
#> sigma.sq.t-sp5 0.7240 0.9920 0.0568 0.3952 3.4574 NA 21
#> sigma.sq.t-sp6 0.2539 0.2327 0.0293 0.1856 0.8224 NA 10
#> sigma.sq.t-sp7 4.8389 6.4847 0.4020 2.2605 26.3290 NA 7
#> rho-sp1 0.5669 0.3134 -0.0904 0.5892 0.9527 NA 6
#> rho-sp2 0.7045 0.2546 0.0477 0.7591 0.9672 NA 5
#> rho-sp3 0.0069 0.6058 -0.9624 0.1315 0.8025 NA 2
#> rho-sp4 0.6666 0.2584 0.1393 0.7959 0.9349 NA 2
#> rho-sp5 0.5225 0.3844 -0.3379 0.7012 0.9206 NA 3
#> rho-sp6 0.2639 0.3307 -0.4224 0.3167 0.7266 NA 7
#> rho-sp7 -0.0965 0.4254 -0.7415 -0.1230 0.6360 NA 5
# Predict at new sites across all n.max.years
# Take a look at array of covariates for prediction
str(X.0)
#> num [1:16, 1:10, 1:3] 1 1 1 1 1 1 1 1 1 1 ...
# Subset to only grab time periods 1, 2, and 5
t.cols <- c(1, 2, 5)
X.pred <- X.0[, t.cols, ]
out.pred <- predict(out, X.pred, coords.0, t.cols = t.cols, type = 'occupancy')
#> ----------------------------------------
#> Prediction description
#> ----------------------------------------
#> Spatial Factor NNGP Multi-season, Multi-species Occupancy model with Polya-Gamma latent
#> variable fit with 48 sites and 3 years.
#>
#> Number of covariates 3 (including intercept if specified).
#>
#> Number of spatially-varying covariates 1 (including intercept if specified).
#>
#> Using the exponential spatial correlation model.
#>
#> Using 5 nearest neighbors.
#> Using 3 latent spatial factors.
#>
#> Number of MCMC samples 100.
#>
#> Predicting at 16 non-sampled locations.
#>
#>
#> Source compiled with OpenMP support and model fit using 1 threads.
#> -------------------------------------------------
#> Predicting
#> -------------------------------------------------
#> Location: 16 of 16, 100.00%
#> Generating latent occupancy state
str(out.pred)
#> List of 6
#> $ z.0.samples : num [1:100, 1:7, 1:16, 1:3] 0 0 0 0 0 0 0 0 0 1 ...
#> $ w.0.samples : num [1:100, 1:3, 1:16] 0.431 -0.894 -0.15 -0.113 -0.959 ...
#> $ psi.0.samples: num [1:100, 1:7, 1:16, 1:3] 0.03207 0.00273 0.0121 0.01081 0.00487 ...
#> $ run.time : 'proc_time' Named num [1:5] 0.018 0.09 0.014 0 0
#> ..- attr(*, "names")= chr [1:5] "user.self" "sys.self" "elapsed" "user.child" ...
#> $ call : language predict.svcTMsPGOcc(object = object, X.0 = X.0, coords.0 = coords.0, t.cols = t.cols, n.omp.threads = n.omp.| __truncated__ ...
#> $ object.class : chr "stMsPGOcc"
#> - attr(*, "class")= chr "predict.svcTMsPGOcc"