Skip to contents

The function predict collects posterior predictive samples for a set of new locations given an object of class `tMsPGOcc`. Prediction is possible for both the latent occupancy state as well as detection. Predictions are currently only possible for sampled primary time periods.

Usage

# S3 method for tMsPGOcc
predict(object, X.0, t.cols, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object

an object of class tMsPGOcc

X.0

the design matrix of covariates at the prediction locations. This should be a three-dimensional array, with dimensions corresponding to site, primary time period, and covariate, respectively. Note that the first covariate should consist of all 1s for the intercept if an intercept is included in the model. If random effects are included in the occupancy (or detection if type = 'detection') portion of the model, the levels of the random effects at the new locations/time periods should be included as an element of the three-dimensional array. The ordering of the levels should match the ordering used to fit the data in tMsPGOcc. The covariates should be organized in the same order as they were specified in the corresponding formula argument of tMsPGOcc. Names of the third dimension (covariates) of any random effects in X.0 must match the name of the random effects used to fit the model, if specified in the corresponding formula argument of tMsPGOcc. See example below.

t.cols

an indexing vector used to denote which primary time periods are contained in the design matrix of covariates at the prediction locations (X.0). The values should denote the specific primary time periods used to fit the model. The values should indicate the columns in data$y used to fit the model for which prediction is desired. See example below.

ignore.RE

logical value that specifies whether or not to remove random unstructured occurrence (or detection if type = 'detection') effects from the subsequent predictions. If TRUE, unstructured random effects will be included. If FALSE, unstructured random effects will be set to 0 and predictions will only be generated from the fixed effects and AR(1) random effects if the model was fit with ar1 = TRUE.

type

a quoted keyword indicating what type of prediction to produce. Valid keywords are 'occupancy' to predict latent occupancy probability and latent occupancy values (this is the default), or 'detection' to predict detection probability given new values of detection covariates.

...

currently no additional arguments

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random effects are supported for prediction. For sampled levels, the posterior distribution for the random intercept corresponding to that level of the random effect will be used in the prediction. For non-sampled levels, random values are drawn from a normal distribution using the posterior samples of the random effect variance, which results in fully propagated uncertainty in predictions with models that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary time periods are obtained directly when fitting the model. See the psi.samples and z.samples portions of the output list from the model object of class tMsPGOcc.

Author

Jeffrey W. Doser doserjef@msu.edu

Value

A list object of class predict.tMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples

a four-dimensional object of posterior predictive samples for the latent occupancy probability values with dimensions corresponding to posterior predictive sample, species, site, and primary time period.

z.0.samples

a four-dimensional object of posterior predictive samples for the latent occupancy values with dimensions corresponding to posterior predictive sample, species, site, and primary time period.

When type = 'detection', the list consists of:

p.0.samples

a four-dimensional object of posterior predictive samples for the detection probability values with dimensions corresponding to posterior predictive sample, species, site, and primary time period.

The return object will include additional objects used for standard extractor functions.

Examples

# Simulate Data -----------------------------------------------------------
set.seed(500)
J.x <- 8
J.y <- 8
J <- J.x * J.y
# Years sampled
n.time <- sample(3:10, J, replace = TRUE)
# n.time <- rep(10, J)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {
  n.rep[j, 1:n.time[j]] <- sample(2:4, n.time[j], replace = TRUE)
  # n.rep[j, 1:n.time[j]] <- rep(4, n.time[j])
}
N <- 7
# Community-level covariate effects
# Occurrence
beta.mean <- c(-3, -0.2, 0.5)
trend <- FALSE
sp.only <- 0
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 1.4)
# Detection
alpha.mean <- c(0, 1.2, -1.5)
tau.sq.alpha <- c(1, 0.5, 2.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
  beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
  alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- FALSE

dat <- simTMsOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep, N = N,
     beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
     psi.RE = psi.RE, p.RE = p.RE, sp = sp)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates
X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]

occ.covs <- list(occ.cov.1 = X[, , 2],
     occ.cov.2 = X[, , 3])
det.covs <- list(det.cov.1 = X.p[, , , 2],
     det.cov.2 = X.p[, , , 3])

data.list <- list(y = y, occ.covs = occ.covs,
                  det.covs = det.covs)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
       alpha.comm.normal = list(mean = 0, var = 2.72),
       tau.sq.beta.ig = list(a = 0.1, b = 0.1),
       tau.sq.alpha.ig = list(a = 0.1, b = 0.1))
z.init <- apply(y, c(1, 2, 3), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,
       alpha = 0, tau.sq.beta = 1, tau.sq.alpha = 1,
       z = z.init)
# Tuning
tuning.list <- list(phi = 1)

# Number of batches
n.batch <- 5
# Batch length
batch.length <- 25
n.burn <- 25
n.thin <- 1
n.samples <- n.batch * batch.length

# Note that this is just a test case and more iterations/chains may need to 
# be run to ensure convergence.
out <- tMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2,
                det.formula = ~ det.cov.1 + det.cov.2,
                data = data.list,
                inits = inits.list,
                n.batch = n.batch,
                batch.length = batch.length,
                accept.rate = 0.43,
                priors = prior.list,
                n.omp.threads = 1,
                verbose = TRUE,
                n.report = 1,
                n.burn = n.burn,
    n.thin = n.thin,
    n.chains = 1)
#> ----------------------------------------
#> 	Preparing to run the model
#> ----------------------------------------
#> ----------------------------------------
#> 	Model description
#> ----------------------------------------
#> Multi-season Multi-species Occupancy Model with Polya-Gamma latent
#> variables with 48 sites, 7 species, and 10 primary time periods.
#> 
#> Samples per chain: 125 (5 batches of length 25)
#> Burn-in: 25 
#> Thinning Rate: 1 
#> Number of Chains: 1 
#> Total Posterior Samples: 100 
#> 
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#> 
#> Adaptive Metropolis with target acceptance rate: 43.0
#> ----------------------------------------
#> 	Chain 1
#> ----------------------------------------
#> Sampling ... 
#> Batch: 1 of 5, 20.00%
#> -------------------------------------------------
#> Batch: 2 of 5, 40.00%
#> -------------------------------------------------
#> Batch: 3 of 5, 60.00%
#> -------------------------------------------------
#> Batch: 4 of 5, 80.00%
#> -------------------------------------------------
#> Batch: 5 of 5, 100.00%

summary(out)
#> 
#> Call:
#> tMsPGOcc(occ.formula = ~occ.cov.1 + occ.cov.2, det.formula = ~det.cov.1 + 
#>     det.cov.2, data = data.list, inits = inits.list, priors = prior.list, 
#>     n.batch = n.batch, batch.length = batch.length, accept.rate = 0.43, 
#>     n.omp.threads = 1, verbose = TRUE, n.report = 1, n.burn = n.burn, 
#>     n.thin = n.thin, n.chains = 1)
#> 
#> Samples per Chain: 125
#> Burn-in: 25
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 100
#> Run Time (min): 0.0029
#> 
#> ----------------------------------------
#> 	Community Level
#> ----------------------------------------
#> Occurrence Means (logit scale): 
#>                Mean     SD    2.5%     50%   97.5% Rhat ESS
#> (Intercept) -3.3109 0.2307 -3.8180 -3.3223 -2.9422   NA  48
#> occ.cov.1    0.2280 0.2316 -0.2252  0.2458  0.5956   NA 100
#> occ.cov.2    0.8558 0.4307 -0.0777  0.8530  1.7492   NA 100
#> 
#> Occurrence Variances (logit scale): 
#>               Mean     SD   2.5%    50%  97.5% Rhat ESS
#> (Intercept) 0.2768 0.2451 0.0441 0.1847 0.9448   NA   9
#> occ.cov.1   0.2956 0.3391 0.0437 0.2053 1.0132   NA  56
#> occ.cov.2   1.7869 1.6848 0.3878 1.2085 6.4331   NA  47
#> 
#> Detection Means (logit scale): 
#>                Mean     SD    2.5%     50%  97.5% Rhat ESS
#> (Intercept)  0.2090 0.2816 -0.2615  0.1777 0.7288   NA  47
#> det.cov.1    1.0884 0.2611  0.5824  1.0923 1.5399   NA  26
#> det.cov.2   -1.5798 0.8959 -3.3074 -1.7259 0.3233   NA 153
#> 
#> Detection Variances (logit scale): 
#>               Mean     SD   2.5%    50%   97.5% Rhat ESS
#> (Intercept) 0.3323 0.2590 0.0622 0.2508  1.0260   NA  37
#> det.cov.1   0.3643 0.2824 0.0709 0.2915  0.9383   NA  29
#> det.cov.2   7.9616 5.6275 1.3276 6.2532 20.4548   NA  44
#> 
#> ----------------------------------------
#> 	Species Level
#> ----------------------------------------
#> Occurrence (logit scale): 
#>                    Mean     SD    2.5%     50%   97.5% Rhat ESS
#> (Intercept)-sp1 -3.4872 0.3468 -4.3103 -3.4762 -2.9194   NA   8
#> (Intercept)-sp2 -3.3259 0.2072 -3.7166 -3.3494 -2.8952   NA  30
#> (Intercept)-sp3 -3.4532 0.3561 -4.2085 -3.4772 -2.8463   NA  11
#> (Intercept)-sp4 -3.0669 0.2756 -3.5864 -3.0640 -2.5198   NA  14
#> (Intercept)-sp5 -3.0966 0.1938 -3.4963 -3.1097 -2.7534   NA  23
#> (Intercept)-sp6 -3.1886 0.2431 -3.6194 -3.1857 -2.7659   NA  20
#> (Intercept)-sp7 -4.0226 0.4035 -4.8233 -3.9927 -3.2591   NA  15
#> occ.cov.1-sp1    0.2603 0.1873 -0.1026  0.2623  0.5418   NA  20
#> occ.cov.1-sp2   -0.0771 0.2998 -0.7013 -0.0438  0.4383   NA  15
#> occ.cov.1-sp3   -0.2764 0.2282 -0.7217 -0.2580  0.1789   NA  18
#> occ.cov.1-sp4   -0.0571 0.2322 -0.5874 -0.0227  0.3321   NA  21
#> occ.cov.1-sp5    0.5879 0.2963  0.1452  0.5467  1.2141   NA  13
#> occ.cov.1-sp6    0.3897 0.2277 -0.0345  0.3714  0.8632   NA  21
#> occ.cov.1-sp7    0.6312 0.2912  0.0488  0.6563  1.1331   NA  22
#> occ.cov.2-sp1    1.0166 0.3295  0.3946  0.9706  1.6807   NA   6
#> occ.cov.2-sp2    1.5551 0.2962  1.0100  1.5765  2.0808   NA  14
#> occ.cov.2-sp3   -0.5533 0.2781 -1.1318 -0.5563 -0.0820   NA  20
#> occ.cov.2-sp4   -0.4854 0.2788 -1.0658 -0.4691  0.0265   NA  16
#> occ.cov.2-sp5    0.6401 0.2576  0.2398  0.6128  1.1507   NA  21
#> occ.cov.2-sp6    1.8028 0.2523  1.3883  1.7978  2.3222   NA  29
#> occ.cov.2-sp7    2.3386 0.3833  1.6353  2.2899  3.1333   NA  12
#> 
#> Detection (logit scale): 
#>                    Mean     SD    2.5%     50%   97.5% Rhat ESS
#> (Intercept)-sp1  0.4957 0.4097 -0.3369  0.5105  1.2284   NA  38
#> (Intercept)-sp2 -0.1397 0.2827 -0.5827 -0.1852  0.4461   NA  59
#> (Intercept)-sp3  0.1428 0.4509 -0.7268  0.0941  0.9748   NA  46
#> (Intercept)-sp4  0.0227 0.3952 -0.6975  0.0318  0.8089   NA  96
#> (Intercept)-sp5  0.2110 0.3299 -0.2923  0.2036  0.8932   NA  44
#> (Intercept)-sp6  0.7258 0.2554  0.2885  0.7102  1.2129   NA  34
#> (Intercept)-sp7 -0.0750 0.2639 -0.4475 -0.0949  0.4483   NA  38
#> det.cov.1-sp1    1.4091 0.4053  0.7989  1.3594  2.2732   NA  28
#> det.cov.1-sp2    0.9480 0.3342  0.3666  0.9384  1.5320   NA  59
#> det.cov.1-sp3    1.0683 0.4146  0.1544  1.0407  1.7661   NA  33
#> det.cov.1-sp4    0.5424 0.3862 -0.1949  0.5676  1.2654   NA  47
#> det.cov.1-sp5    1.6667 0.4222  0.9868  1.6345  2.4248   NA  22
#> det.cov.1-sp6    0.8096 0.2738  0.3532  0.8220  1.3110   NA  21
#> det.cov.1-sp7    1.2270 0.3169  0.6383  1.2160  1.8338   NA  55
#> det.cov.2-sp1    0.5782 0.6434 -0.5428  0.5266  1.8323   NA  58
#> det.cov.2-sp2   -0.4742 0.3439 -1.1693 -0.4981  0.1707   NA  59
#> det.cov.2-sp3   -6.2777 1.5269 -9.2132 -6.4590 -3.1616   NA  21
#> det.cov.2-sp4   -3.6953 0.8696 -5.3149 -3.5892 -2.1963   NA  21
#> det.cov.2-sp5   -1.0684 0.4689 -2.0652 -1.0497 -0.1402   NA  29
#> det.cov.2-sp6   -1.7423 0.3810 -2.5516 -1.6913 -1.0495   NA  38
#> det.cov.2-sp7   -2.1465 0.4242 -2.9209 -2.1369 -1.4090   NA  35

# Predict at new sites during time periods 1, 2, and 5
# Take a look at array of covariates for prediction
str(X.0)
#>  num [1:16, 1:10, 1:3] 1 1 1 1 1 1 1 1 1 1 ...
# Subset to only grab time periods 1, 2, and 5
t.cols <- c(1, 2, 5)
X.pred <- X.0[, t.cols, ]
out.pred <- predict(out, X.pred, t.cols = t.cols, type = 'occupancy')
str(out.pred)
#> List of 3
#>  $ psi.0.samples: num [1:100, 1:7, 1:16, 1:3] 0.594 0.412 0.353 0.3 0.422 ...
#>  $ z.0.samples  : int [1:100, 1:7, 1:16, 1:3] 1 1 1 0 1 0 0 0 0 0 ...
#>  $ call         : language predict.tMsPGOcc(object = out, X.0 = X.pred, t.cols = t.cols, type = "occupancy")
#>  - attr(*, "class")= chr "predict.tMsPGOcc"