Function for Fitting Spatial Factor Multi-Species Occupancy Models
sfMsPGOcc.Rd
The function sfMsPGOcc
fits multi-species spatial occupancy models with species correlations (i.e., a spatially-explicit joint species distribution model with imperfect detection). We use Polya-Gamma latent variables and a spatial factor modeling approach. Currently, models are implemented using a Nearest Neighbor Gaussian Process.
Usage
sfMsPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.factors, n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed,
k.fold.only = FALSE, ...)
Arguments
- occ.formula
a symbolic description of the model to be fit for the occurrence portion of the model using R's model syntax. Random intercepts are allowed using lme4 syntax (Bates et al. 2015). Only right-hand side of formula is specified. See example below.
- det.formula
a symbolic description of the model to be fit for the detection portion of the model using R's model syntax. Only right-hand side of formula is specified. See example below. Random intercepts are allowed using lme4 syntax (Bates et al. 2015).
- data
a list containing data necessary for model fitting. Valid tags are
y
,occ.covs
,det.covs
,coords
, andgrid.index
.y
is a three-dimensional array with first dimension equal to the number of species, second dimension equal to the number of sites, and third dimension equal to the maximum number of replicates at a given site.occ.covs
is a matrix or data frame containing the variables used in the occurrence portion of the model, with \(J\) rows for each column (variable).det.covs
is a list of variables included in the detection portion of the model. Each list element is a different detection covariate, which can be site-level or observational-level. Site-level covariates are specified as a vector of length \(J\) while observation-level covariates are specified as a matrix or data frame with the number of rows equal to \(J\) and number of columns equal to the maximum number of replicates at a given site.coords
is a matrix of the observation coordinates used to estimate the spatial random effect for each site.coords
has two columns for the easting and northing coordinate, respectively. Typically, each site in the data set will have it's own coordinate, such thatcoords
is a \(J \times 2\) matrix andgrid.index
should not be specified. If you desire to estimate spatial random effects at some larger spatial level, e.g., if points fall within grid cells and you want to estimate a spatial random effect for each grid cell instead of each point,coords
can be specified as the coordinate for each grid cell. In such a case,grid.index
is an indexing vector of length J, where each value ofgrid.index
indicates the corresponding row incoords
that the given site corresponds to. Note thatspOccupancy
assumes coordinates are specified in a projected coordinate system.- inits
a list with each tag corresponding to a parameter name. Valid tags are
alpha.comm
,beta.comm
,beta
,alpha
,tau.sq.beta
,tau.sq.alpha
,sigma.sq.psi
,sigma.sq.p
,z
,phi
,lambda
, andnu
.nu
is only specified ifcov.model = "matern"
, andsigma.sq.psi
andsigma.sq.p
are only specified if random effects are included inocc.formula
ordet.formula
, respectively. The value portion of each tag is the parameter's initial value. Seepriors
description for definition of each parameter name. Additionally, the tagfix
can be set toTRUE
to fix the starting values across all chains. Iffix
is not specified (the default), starting values are varied randomly across chains.- priors
a list with each tag corresponding to a parameter name. Valid tags are
beta.comm.normal
,alpha.comm.normal
,tau.sq.beta.ig
,tau.sq.alpha.ig
,tau.beta.half.t
,tau.alpha.half.t
,sigma.sq.psi
,sigma.sq.p
,phi.unif
, andnu.unif
. Community-level occurrence (beta.comm
) and detection (alpha.comm
) regression coefficients are assumed to follow a normal distribution. The hyperparameters of the normal distribution are passed as a list of length two with the first and second elements corresponding to the mean and variance of the normal distribution, which are each specified as vectors of length equal to the number of coefficients to be estimated or of length one if priors are the same for all coefficients. If not specified, prior means are set to 0 and prior variances set to 2.73. By default, community-level variance parameters for occupancy (tau.sq.beta
) and detection (tau.sq.alpha
) are assumed to follow an inverse Gamma distribution. The hyperparameters of the inverse gamma distribution are passed as a list of length two with the first and second elements corresponding to the shape and scale parameters, which are each specified as vectors of length equal to the number of coefficients to be estimated or a single value if priors are the same for all parameters. If not specified, prior shape and scale parameters are set to 0.1. Alternatively, half-t priors can be specified for the community level occurrence/detection standard deviation parameters using the tagstau.beta.half.t
andtau.alpha.half.t
. The hyperparameters of the half-t distribution are passed as a list of length two with the first and second elements corresponding to the degrees of freedom and scale parameters, which are each specified as vectors of length equal to the number of coefficients to be estimated or a single value if priors are the same for all parameters. The spatial factor model fitsn.factors
independent spatial processes. The spatial decayphi
and smoothnessnu
parameters for each latent factor are assumed to follow Uniform distributions. The hyperparameters of the Uniform are passed as a list with two elements, with both elements being vectors of lengthn.factors
corresponding to the lower and upper support, respectively, or as a single value if the same value is assigned for all factors. The priors for the factor loadings matrixlambda
are fixed following the standard spatial factor model to ensure parameter identifiability (Christensen and Amemlya 2002). The upper triangular elements of theN x n.factors
matrix are fixed at 0 and the diagonal elements are fixed at 1. The lower triangular elements are assigned a standard normal prior (i.e., mean 0 and variance 1).sigma.sq.psi
andsigma.sq.p
are the random effect variances for any occurrence or detection random effects, respectively, and are assumed to follow an inverse Gamma distribution. The hyperparameters of the inverse-Gamma distribution are passed as a list of length two with first and second elements corresponding to the shape and scale parameters, respectively, which are each specified as vectors of length equal to the number of random intercepts or of length one if priors are the same for all random effect variances.- tuning
a list with each tag corresponding to a parameter name. Valid tags are
phi
andnu
. The value portion of each tag defines the initial variance of the adaptive sampler. We assume the initial variance of the adaptive sampler is the same for each species, although the adaptive sampler will adjust the tuning variances separately for each species. See Roberts and Rosenthal (2009) for details.- cov.model
a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model key words are:
"exponential"
,"matern"
,"spherical"
, and"gaussian"
.- NNGP
if
TRUE
, model is fit with an NNGP. IfFALSE
, a full Gaussian process is used. See Datta et al. (2016) and Finley et al. (2019) for more information. For spatial factor models, onlyNNGP = TRUE
is currently supported.- n.neighbors
number of neighbors used in the NNGP. Only used if
NNGP = TRUE
. Datta et al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5 neighbors can be adequate for certain data sets, which can lead to even greater decreases in run time. We recommend starting with 15 neighbors (the default) and if additional gains in computation time are desired, subsequently compare the results with a smaller number of neighbors using WAIC or k-fold cross-validation.- search.type
a quoted keyword that specifies the type of nearest neighbor search algorithm. Supported method key words are:
"cb"
and"brute"
. The"cb"
should generally be much faster. If locations do not have identical coordinate values on the axis used for the nearest neighbor ordering then"cb"
and"brute"
should produce identical neighbor sets. However, if there are identical coordinate values on the axis used for nearest neighbor ordering, then"cb"
and"brute"
might produce different, but equally valid, neighbor sets, e.g., if data are on a grid.- n.factors
the number of factors to use in the spatial factor model approach. Typically, the number of factors is set to be small (e.g., 4-5) relative to the total number of species in the community, which will lead to substantial decreases in computation time. However, the value can be anywhere between 1 and N (the number of species in the community).
- n.batch
the number of MCMC batches in each chain to run for the Adaptive MCMC sampler. See Roberts and Rosenthal (2009) for details.
- batch.length
the length of each MCMC batch to run for the Adaptive MCMC sampler. See Roberts and Rosenthal (2009) for details.
- accept.rate
target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and Rosenthal (2009) for details.
- n.omp.threads
a positive integer indicating the number of threads to use for SMP parallel processing within chains. The package must be compiled for OpenMP support. For most Intel-based machines, we recommend setting
n.omp.threads
up to the number of hyperthreaded cores. Note,n.omp.threads
> 1 might not work on some systems.- verbose
if
TRUE
, messages about data preparation, model specification, and progress of the sampler are printed to the screen. Otherwise, no messages are printed.- n.report
the interval to report Metropolis sampler acceptance and MCMC progress. Note this is specified in terms of batches and not overall samples for spatial models.
- n.burn
the number of samples out of the total
n.samples
to discard as burn-in for each chain. By default, the first 10% of samples is discarded.- n.thin
the thinning interval for collection of MCMC samples. The thinning occurs after the
n.burn
samples are discarded. Default value is set to 1.- n.chains
the number of chains to run in sequence.
- k.fold
specifies the number of k folds for cross-validation. If not specified as an argument, then cross-validation is not performed and
k.fold.threads
andk.fold.seed
are ignored. In k-fold cross-validation, the data specified indata
is randomly partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsamples are used to fit the model and the remaining k samples are used for prediction. The cross-validation process is repeated k times (the folds). As a scoring rule, we use the model deviance as described in Hooten and Hobbs (2015). Cross-validation is performed after the full model is fit using all the data. Cross-validation results are reported in thek.fold.deviance
object in the return list.- k.fold.threads
number of threads to use for cross-validation. If
k.fold.threads > 1
parallel processing is accomplished using the foreach and doParallel packages. Ignored ifk.fold
is not specified.- k.fold.seed
seed used to split data set into
k.fold
parts for k-fold cross-validation. Ignored ifk.fold
is not specified.- k.fold.only
a logical value indicating whether to only perform cross-validation (
TRUE
) or perform cross-validation after fitting the full model (FALSE
). Default value isFALSE
.- ...
currently no additional arguments
Note
Some of the underlying code used for generating random numbers from the Polya-Gamma distribution is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.lib.utexas.edu/handle/2152/21842.
References
Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaussian process models for large geostatistical datasets. Journal of the American Statistical Association, doi:10.1080/01621459.2015.1044091 .
Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Efficient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational and Graphical Statistics, doi:10.1080/10618600.2018.1537924 .
Finley, A. O., Datta, A., and Banerjee, S. (2020). spNNGP R package for nearest neighbor Gaussian process models. arXiv preprint arXiv:2001.09111.
Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.
Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational and Graphical Statistics, 18(2):349-367.
Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01 .
Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. Ecological Monographs, 85(1), 3-28.
Christensen, W. F., and Amemiya, Y. (2002). Latent variable analysis of multivariate spatial data. Journal of the American Statistical Association, 97(457), 302-317.
Author
Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu
Value
An object of class sfMsPGOcc
that is a list comprised of:
- beta.comm.samples
a
coda
object of posterior samples for the community level occurrence regression coefficients.- alpha.comm.samples
a
coda
object of posterior samples for the community level detection regression coefficients.- tau.sq.beta.samples
a
coda
object of posterior samples for the occurrence community variance parameters.- tau.sq.alpha.samples
a
coda
object of posterior samples for the detection community variance parameters.- beta.samples
a
coda
object of posterior samples for the species level occurrence regression coefficients.- alpha.samples
a
coda
object of posterior samples for the species level detection regression coefficients.- theta.samples
a
coda
object of posterior samples for the species level correlation parameters.- lambda.samples
a
coda
object of posterior samples for the latent spatial factor loadings.- z.samples
a three-dimensional array of posterior samples for the latent occurrence values for each species.
- psi.samples
a three-dimensional array of posterior samples for the latent occupancy probability values for each species.
- w.samples
a three-dimensional array of posterior samples for the latent spatial random effects for each latent factor.
- sigma.sq.psi.samples
a
coda
object of posterior samples for variances of random intercepts included in the occurrence portion of the model. Only included if random intercepts are specified inocc.formula
.- sigma.sq.p.samples
a
coda
object of posterior samples for variances of random intercpets included in the detection portion of the model. Only included if random intercepts are specified indet.formula
.- beta.star.samples
a
coda
object of posterior samples for the occurrence random effects. Only included if random intercepts are specified inocc.formula
.- alpha.star.samples
a
coda
object of posterior samples for the detection random effects. Only included if random intercepts are specified indet.formula
.- like.samples
a three-dimensional array of posterior samples for the likelihood value associated with each site and species. Used for calculating WAIC.
- rhat
a list of Gelman-Rubin diagnostic values for some of the model parameters.
- ESS
a list of effective sample sizes for some of the model parameters.
- run.time
MCMC sampler execution time reported using
proc.time()
.- k.fold.deviance
vector of scoring rules (deviance) from k-fold cross-validation. A separate value is reported for each species. Only included if
k.fold
is specified in function call.
The return object will include additional objects used for
subsequent prediction and/or model fit evaluation. Note that detection
probability estimated values are not included in the model object, but can
be extracted using fitted()
.
Examples
set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 7
J.y <- 7
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 8
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
# Include a non-spatial random effect on occurrence
psi.RE <- list(levels = c(20),
sigma.sq.psi = c(0.5))
p.RE <- list()
# Include a random effect on detection
p.RE <- list(levels = c(40),
sigma.sq.p = c(2))
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
n.factors <- 4
phi <- runif(n.factors, 3/1, 3/.4)
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sp = TRUE, cov.model = 'exponential',
factor.model = TRUE, n.factors = n.factors, psi.RE = psi.RE,
p.RE = p.RE)
# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length
y <- dat$y
X <- dat$X
X.p <- dat$X.p
X.p.re <- dat$X.p.re
X.re <- dat$X.re
coords <- as.matrix(dat$coords)
# Package all data into a list
occ.covs <- cbind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.cov', 'occ.re')
det.covs <- list(det.cov.1 = X.p[, , 2],
det.cov.2 = X.p[, , 3],
det.re = X.p.re[, , 1])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1))
# Initial values
lambda.inits <- matrix(0, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(alpha.comm = 0,
beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
phi = 3 / .5,
lambda = lambda.inits,
z = apply(y, c(1, 2), max, na.rm = TRUE))
# Tuning
tuning.list <- list(phi = 1)
# Note that this is just a test case and more iterations/chains may need to
# be run to ensure convergence.
out <- sfMsPGOcc(occ.formula = ~ occ.cov + (1 | occ.re),
det.formula = ~ det.cov.1 + det.cov.2 + (1 | det.re),
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.factors = n.factors,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1,
n.chains = 1)
#> ----------------------------------------
#> Preparing to run the model
#> ----------------------------------------
#> No prior specified for sigma.sq.psi.ig.
#> Setting prior shape to 0.1 and prior scale to 0.1
#> No prior specified for sigma.sq.p.ig.
#> Setting prior shape to 0.1 and prior scale to 0.1
#> sigma.sq.psi is not specified in initial values.
#> Setting initial values to random values between 0.5 and 10
#> sigma.sq.p is not specified in initial values.
#> Setting initial values to random values between 0.5 and 10
#> ----------------------------------------
#> Building the neighbor list
#> ----------------------------------------
#> ----------------------------------------
#> Building the neighbors of neighbors list
#> ----------------------------------------
#> ----------------------------------------
#> Model description
#> ----------------------------------------
#> Spatial Factor NNGP Multi-species Occupancy Model with Polya-Gamma latent
#> variable fit with 49 sites and 8 species.
#>
#> Samples per chain: 250 (10 batches of length 25)
#> Burn-in: 50
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 200
#>
#> Using the exponential spatial correlation model.
#>
#> Using 4 latent spatial factors.
#> Using 5 nearest neighbors.
#>
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#>
#> Adaptive Metropolis with target acceptance rate: 43.0
#> ----------------------------------------
#> Chain 1
#> ----------------------------------------
#> Sampling ...
#> Batch: 10 of 10, 100.00%
summary(out)
#>
#> Call:
#> sfMsPGOcc(occ.formula = ~occ.cov + (1 | occ.re), det.formula = ~det.cov.1 +
#> det.cov.2 + (1 | det.re), data = data.list, inits = inits.list,
#> priors = prior.list, tuning = tuning.list, cov.model = "exponential",
#> NNGP = TRUE, n.neighbors = 5, search.type = "cb", n.factors = n.factors,
#> n.batch = n.batch, batch.length = batch.length, accept.rate = 0.43,
#> n.omp.threads = 1, verbose = TRUE, n.report = 10, n.burn = 50,
#> n.thin = 1, n.chains = 1)
#>
#> Samples per Chain: 250
#> Burn-in: 50
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 200
#> Run Time (min): 0.0053
#>
#> ----------------------------------------
#> Community Level
#> ----------------------------------------
#> Occurrence Means (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) -0.0081 0.3459 -0.7384 0.0127 0.6763 NA 28
#> occ.cov 0.2883 0.2109 -0.1488 0.2891 0.6429 NA 20
#>
#> Occurrence Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.4643 0.4554 0.0313 0.3336 1.5702 NA 19
#> occ.cov 0.2255 0.1843 0.0453 0.1750 0.7135 NA 98
#>
#> Occurrence Random Effect Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> occ.re 2.2372 1.594 0.3263 1.731 5.4822 NA 3
#>
#> Detection Means (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.3644 0.2163 0.0092 0.3647 0.8524 NA 75
#> det.cov.1 0.1168 0.1681 -0.2272 0.1259 0.4083 NA 82
#> det.cov.2 -0.4082 0.4286 -1.1336 -0.4126 0.4202 NA 200
#>
#> Detection Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.2505 0.1972 0.0414 0.1945 0.6845 NA 71
#> det.cov.1 0.1210 0.1245 0.0240 0.0829 0.4319 NA 118
#> det.cov.2 1.2388 1.1201 0.2829 0.9643 3.5201 NA 80
#>
#> Detection Random Effect Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> det.re 1.3617 0.4973 0.6829 1.2489 2.6164 NA 8
#>
#> ----------------------------------------
#> Species Level
#> ----------------------------------------
#> Occurrence (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept)-sp1 0.2194 0.4458 -0.5287 0.1911 1.1300 NA 71
#> (Intercept)-sp2 0.0223 0.3861 -0.7062 0.0276 0.7281 NA 64
#> (Intercept)-sp3 -0.3037 0.5671 -1.4873 -0.1881 0.6681 NA 29
#> (Intercept)-sp4 0.1652 0.4825 -0.7280 0.1415 1.3061 NA 42
#> (Intercept)-sp5 -0.1721 0.5107 -1.1356 -0.1863 0.8683 NA 53
#> (Intercept)-sp6 -0.4252 0.6368 -1.9512 -0.3075 0.5167 NA 21
#> (Intercept)-sp7 0.2309 0.4735 -0.6611 0.2374 1.1668 NA 46
#> (Intercept)-sp8 0.1459 0.5282 -0.9446 0.1812 1.1611 NA 32
#> occ.cov-sp1 0.5180 0.3155 -0.0651 0.4973 1.1257 NA 50
#> occ.cov-sp2 0.0668 0.3904 -0.6874 0.0674 0.8179 NA 26
#> occ.cov-sp3 0.4273 0.3543 -0.1623 0.4304 1.1110 NA 65
#> occ.cov-sp4 0.4356 0.3173 -0.1816 0.4580 1.0029 NA 70
#> occ.cov-sp5 0.2731 0.3652 -0.2955 0.2665 1.0244 NA 49
#> occ.cov-sp6 0.0457 0.3610 -0.6563 0.0736 0.6974 NA 59
#> occ.cov-sp7 0.2042 0.3352 -0.4108 0.2147 0.7696 NA 71
#> occ.cov-sp8 0.2984 0.4011 -0.4640 0.2500 1.1202 NA 32
#>
#> Detection (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept)-sp1 0.0344 0.2731 -0.5400 0.0505 0.5447 NA 72
#> (Intercept)-sp2 0.6685 0.3504 0.0117 0.6589 1.4954 NA 47
#> (Intercept)-sp3 0.3385 0.3135 -0.3040 0.3475 0.9173 NA 65
#> (Intercept)-sp4 0.1622 0.2803 -0.3486 0.1540 0.7749 NA 55
#> (Intercept)-sp5 0.6876 0.3561 0.0769 0.6858 1.4403 NA 51
#> (Intercept)-sp6 0.4344 0.3905 -0.2131 0.4007 1.2100 NA 52
#> (Intercept)-sp7 0.1202 0.2711 -0.4087 0.1578 0.5930 NA 87
#> (Intercept)-sp8 0.5471 0.3120 0.0091 0.5041 1.1968 NA 64
#> det.cov.1-sp1 0.2070 0.2162 -0.2006 0.2123 0.6057 NA 84
#> det.cov.1-sp2 0.0277 0.2424 -0.4403 0.0267 0.4805 NA 99
#> det.cov.1-sp3 -0.0169 0.2540 -0.4914 -0.0165 0.4619 NA 122
#> det.cov.1-sp4 0.1447 0.1963 -0.2376 0.1470 0.4935 NA 227
#> det.cov.1-sp5 0.0232 0.2288 -0.3709 0.0097 0.4701 NA 83
#> det.cov.1-sp6 0.1935 0.2502 -0.2922 0.1977 0.7003 NA 55
#> det.cov.1-sp7 0.1905 0.2259 -0.2525 0.1817 0.6060 NA 101
#> det.cov.1-sp8 0.0480 0.2078 -0.3601 0.0357 0.4602 NA 142
#> det.cov.2-sp1 -0.1337 0.2767 -0.6008 -0.1439 0.4279 NA 106
#> det.cov.2-sp2 -1.5349 0.4162 -2.3194 -1.5250 -0.8275 NA 62
#> det.cov.2-sp3 0.2908 0.3456 -0.3462 0.3011 0.9616 NA 97
#> det.cov.2-sp4 -0.6472 0.3052 -1.4099 -0.6365 -0.1103 NA 109
#> det.cov.2-sp5 0.3041 0.3525 -0.4392 0.3253 0.9366 NA 80
#> det.cov.2-sp6 0.6642 0.3924 -0.0536 0.6347 1.3630 NA 92
#> det.cov.2-sp7 -1.8010 0.3786 -2.5880 -1.8174 -1.0590 NA 72
#> det.cov.2-sp8 -0.5898 0.2707 -1.0793 -0.6023 -0.0353 NA 80
#>
#> ----------------------------------------
#> Spatial Covariance
#> ----------------------------------------
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> phi-1 16.7590 7.1032 5.3119 17.2523 29.6900 NA 13
#> phi-2 15.8354 7.0609 4.6057 15.7996 27.9922 NA 17
#> phi-3 17.0842 8.6915 3.3145 18.3088 29.4935 NA 8
#> phi-4 14.9300 7.4642 3.3804 14.2852 28.7729 NA 9