Function for Fitting Single-Species Integrated Spatial Occupancy Models Using Polya-Gamma Latent Variables
spIntPGOcc.Rd
The function spIntPGOcc
fits single-species integrated spatial occupancy models using Polya-Gamma latent variables. Models can be fit using either a full Gaussian process or a Nearest Neighbor Gaussian Process for large data sets. Data integration is done using a joint likelihood framework, assuming distinct detection models for each data source that are each conditional on a single latent occupancy process.
Usage
spIntPGOcc(occ.formula, det.formula, data, inits, priors,
tuning, cov.model = "exponential", NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed, k.fold.data, k.fold.only = FALSE, ...)
Arguments
- occ.formula
a symbolic description of the model to be fit for the occurrence portion of the model using R's model syntax. Only right-hand side of formula is specified. See example below.
- det.formula
a list of symbolic descriptions of the models to be fit for the detection portion of the model using R's model syntax for each data set. Each element in the list is a formula for the detection model of a given data set. Only right-hand side of formula is specified. See example below.
- data
a list containing data necessary for model fitting. Valid tags are
y
,occ.covs
,det.covs
,sites
andcoords
.y
is a list of matrices or data frames for each data set used in the integrated model. Each element of the list has first dimension equal to the number of sites with that data source and second dimension equal to the maximum number of replicates at a given site.occ.covs
is a matrix or data frame containing the variables used in the occurrence portion of the model, with the number of rows being the number of sites with at least one data source for each column (variable).det.covs
is a list of variables included in the detection portion of the model for each data source.det.covs
should have the same number of elements asy
, where each element is itself a list. Each element of the list for a given data source is a different detection covariate, which can be site-level or observational-level. Site-level covariates are specified as a vector with length equal to the number of observed sites of that data source, while observation-level covariates are specified as a matrix or data frame with the number of rows equal to the number of observed sites of that data source and number of columns equal to the maximum number of replicates at a given site.coords
is a matrix of the observation site coordinates. Note thatspOccupancy
assumes coordinates are specified in a projected coordinate system.- inits
a list with each tag corresponding to a parameter name. Valid tags are
z
,beta
,alpha
,sigma.sq
,phi
,w
, andnu
. The value portion of all tags exceptalpha
is the parameter's initial value. The tagalpha
is a list comprised of the initial values for the detection parameters for each data source. Each element of the list should be a vector of initial values for all detection parameters in the given data source or a single value for each data source to assign all parameters for a given data source the same initial value. Seepriors
description for definition of each parameter name. Additionally, the tagfix
can be set toTRUE
to fix the starting values across all chains. Iffix
is not specified (the default), starting values are varied randomly across chains.- priors
a list with each tag corresponding to a parameter name. Valid tags are
beta.normal
,alpha.normal
,phi.unif
,sigma.sq.ig
,sigma.sq.unif
, andnu.unif
. Occurrence (beta
) and detection (alpha
) regression coefficients are assumed to follow a normal distribution. Forbeta
hyperparameters of the normal distribution are passed as a list of length two with the first and second elements corresponding to the mean and variance of the normal distribution, which are each specified as vectors of length equal to the number of coefficients to be estimated or of length one if priors are the same for all coefficients. For the detection coefficientsalpha
, the mean and variance hyperparameters are themselves passed in as lists, with each element of the list corresponding to the specific hyperparameters for the detection parameters in a given data source. If not specified, prior means are set to 0 and prior variances set to 2.73 for normal priors. The spatial variance parameter,sigma.sq
, is assumed to follow an inverse-Gamma distribution or a uniform distribution (default is inverse-Gamma).sigma.sq
can also be fixed at its initial value by setting the prior value to"fixed"
. The spatial decayphi
and smoothnessnu
parameters are assumed to follow Uniform distributions. The hyperparameters of the inverse-Gamma are passed as a vector of length two, with the first and second elements corresponding to the shape and scale, respectively. The hyperparameters of the Uniform are also passed as a vector of length two with the first and second elements corresponding to the lower and upper support, respectively.- tuning
a list with each tag corresponding to a parameter name. Valid tags are
phi
andnu
. The value portion of each tag defines the initial variance of the Adaptive sampler. See Roberts and Rosenthal (2009) for details.- cov.model
a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model key words are:
"exponential"
,"matern"
,"spherical"
, and"gaussian"
.- NNGP
if
TRUE
, model is fit with an NNGP. IfFALSE
, a full Gaussian process is used. See Datta et al. (2016) and Finley et al. (2019) for more information.- n.neighbors
number of neighbors used in the NNGP. Only used if
NNGP = TRUE
. Datta et al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5 neighbors can be adequate for certain data sets, which can lead to even greater decreases in run time. We recommend starting with 15 neighbors (the default) and if additional gains in computation time are desired, subsequently compare the results with a smaller number of neighbors using WAIC or k-fold cross-validation.- search.type
a quoted keyword that specifies the type of nearest neighbor search algorithm. Supported method key words are:
"cb"
and"brute"
. The"cb"
should generally be much faster. If locations do not have identical coordinate values on the axis used for the nearest neighbor ordering then"cb"
and"brute"
should produce identical neighbor sets. However, if there are identical coordinate values on the axis used for nearest neighbor ordering, then"cb"
and"brute"
might produce different, but equally valid, neighbor sets, e.g., if data are on a grid.- n.batch
the number of MCMC batches to run for each chain for the Adaptive MCMC sampler. See Roberts and Rosenthal (2009) for details.
- batch.length
the length of each MCMC batch to run for the Adaptive MCMC sampler. See Roberts and Rosenthal (2009) for details.
- accept.rate
target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and Rosenthal (2009) for details.
- n.omp.threads
a positive integer indicating the number of threads to use for SMP parallel processing. The package must be compiled for OpenMP support. For most Intel-based machines, we recommend setting
n.omp.threads
up to the number of hyperthreaded cores. Note,n.omp.threads
> 1 might not work on some systems.- verbose
if
TRUE
, messages about data preparation, model specification, and progress of the sampler are printed to the screen. Otherwise, no messages are printed.- n.report
the interval to report Metropolis sampler acceptance and MCMC progress. Note this is specified in terms of batches and not overall samples for spatial models.
- n.burn
the number of samples out of the total
n.batch * batch.length
samples to discard as burn-in. By default, the first 10% of samples is discarded.- n.thin
the thinning interval for collection of MCMC samples. The thinning occurs after the
n.burn
samples are discarded. Default value is set to 1.- n.chains
the number of chains to run in sequence.
- k.fold
specifies the number of k folds for cross-validation. If not specified as an argument, then cross-validation is not performed and
k.fold.threads
andk.fold.seed
are ignored. In k-fold cross-validation, the data specified indata
is randomly partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsamples are used to fit the model and the remaining k samples are used for prediction. The cross-validation process is repeated k times (the folds). As a scoring rule, we use the model deviance as described in Hooten and Hobbs (2015). Cross-validation is performed after the full model is fit using all the data. Cross-validation results are reported in thek.fold.deviance
object in the return list.- k.fold.threads
number of threads to use for cross-validation. If
k.fold.threads > 1
parallel processing is accomplished using the foreach and doParallel packages. Ignored ifk.fold
is not specified.- k.fold.seed
seed used to split data set into
k.fold
parts for k-fold cross-validation. Ignored ifk.fold
is not specified.- k.fold.data
an integer specifying the specific data set to hold out values from. If not specified, data from all data set locations will be incorporated into the k-fold cross-validation.
- k.fold.only
a logical value indicating whether to only perform cross-validation (
TRUE
) or perform cross-validation after fitting the full model (FALSE
). Default value isFALSE
.- ...
currently no additional arguments
Note
Some of the underlying code used for generating random numbers from the Polya-Gamma distribution is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.lib.utexas.edu/handle/2152/21842.
References
Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaussian process models for large geostatistical datasets. Journal of the American Statistical Association, doi:10.1080/01621459.2015.1044091 .
Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Efficient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational and Graphical Statistics, doi:10.1080/10618600.2018.1537924 .
Finley, A. O., Datta, A., and Banerjee, S. (2020). spNNGP R package for nearest neighbor Gaussian process models. arXiv preprint arXiv:2001.09111.
Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. Ecological Monographs, 85(1), 3-28.
Hooten, M. B., and Hefley, T. J. (2019). Bringing Bayesian models to life. CRC Press.
Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.
Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational and Graphical Statistics, 18(2):349-367.
Author
Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu
Value
An object of class spIntPGOcc
that is a list comprised of:
- beta.samples
a
coda
object of posterior samples for the occurrence regression coefficients.- alpha.samples
a
coda
object of posterior samples for the detection regression coefficients for all data sources.- z.samples
a
coda
object of posterior samples for the latent occurrence values- psi.samples
a
coda
object of posterior samples for the latent occurrence probability values- theta.samples
a
coda
object of posterior samples for covariance parameters.- w.samples
a
coda
object of posterior samples for latent spatial random effects.- rhat
a list of Gelman-Rubin diagnostic values for some of the model parameters.
- ESS
a list of effective sample sizes for some of the model parameters.
- run.time
execution time reported using
proc.time()
.- k.fold.deviance
scoring rule (deviance) from k-fold cross-validation. A separate deviance value is returned for each data source. Only included if
k.fold
is specified in function call. Only a single value is returned ifk.fold.data
is specified.
The return object will include additional objects used for
subsequent prediction and/or model fit evaluation. Note that detection
probability estimated values are not included in the model object, but can be
extracted using fitted()
.
Examples
set.seed(400)
# Simulate Data -----------------------------------------------------------
# Number of locations in each direction. This is the total region of interest
# where some sites may or may not have a data source.
J.x <- 8
J.y <- 8
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5, 0.5)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alpha[[1]] <- runif(2, 0, 1)
alpha[[2]] <- runif(3, 0, 1)
alpha[[3]] <- runif(2, -1, 1)
alpha[[4]] <- runif(4, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE
# Simulate occupancy data from multiple data sources.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
sigma.sq = sigma.sq, phi = phi, cov.model = 'exponential')
y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
coords <- as.matrix(dat$coords.obs)
coords.0 <- as.matrix(dat$coords.pred)
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(det.cov.1.1 = X.p[[1]][, , 2])
det.covs[[2]] <- list(det.cov.2.1 = X.p[[2]][, , 2],
det.cov.2.2 = X.p[[2]][, , 3])
det.covs[[3]] <- list(det.cov.3.1 = X.p[[3]][, , 2])
det.covs[[4]] <- list(det.cov.4.1 = X.p[[4]][, , 2],
det.cov.4.2 = X.p[[4]][, , 3],
det.cov.4.3 = X.p[[4]][, , 4])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
coords = coords)
J <- length(dat$z.obs)
# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),
beta = 0,
phi = 3 / .5,
sigma.sq = 2,
w = rep(0, J),
z = rep(1, J))
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)),
phi.unif = c(3/1, 3/.1),
sigma.sq.ig = c(2, 2))
# Tuning
tuning.list <- list(phi = 0.3)
# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
out <- spIntPGOcc(occ.formula = ~ occ.cov,
det.formula = list(f.1 = ~ det.cov.1.1,
f.2 = ~ det.cov.2.1 + det.cov.2.2,
f.3 = ~ det.cov.3.1,
f.4 = ~ det.cov.4.1 + det.cov.4.2 + det.cov.4.3),
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.report = 10,
n.burn = 50,
n.thin = 1)
#> ----------------------------------------
#> Preparing to run the model
#> ----------------------------------------
#> ----------------------------------------
#> Model description
#> ----------------------------------------
#> Spatial Integrated Occupancy Model with Polya-Gamma latent
#> variable fit with 54 sites.
#>
#> Integrating 4 occupancy data sets.
#>
#> Samples per chain: 250 (10 batches of length 25)
#> Burn-in: 50
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 200
#>
#> Using the exponential spatial correlation model.
#>
#>
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#>
#> Adaptive Metropolis with target acceptance rate: 43.0
#> ----------------------------------------
#> Chain 1
#> ----------------------------------------
#> Sampling ...
#> Batch: 10 of 10, 100.00%
summary(out)
#>
#> Call:
#> spIntPGOcc(occ.formula = ~occ.cov, det.formula = list(f.1 = ~det.cov.1.1,
#> f.2 = ~det.cov.2.1 + det.cov.2.2, f.3 = ~det.cov.3.1, f.4 = ~det.cov.4.1 +
#> det.cov.4.2 + det.cov.4.3), data = data.list, inits = inits.list,
#> priors = prior.list, tuning = tuning.list, cov.model = "exponential",
#> NNGP = FALSE, n.batch = n.batch, batch.length = batch.length,
#> accept.rate = 0.43, n.omp.threads = 1, verbose = TRUE, n.report = 10,
#> n.burn = 50, n.thin = 1)
#>
#> Samples per Chain: 250
#> Burn-in: 50
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 200
#> Run Time (min): 0.0015
#>
#> Occurrence (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) -0.0654 0.4806 -1.0466 -0.0442 0.6987 NA 28
#> occ.cov 1.0331 0.4524 0.3237 0.9813 1.9626 NA 48
#>
#> Data source 1 Detection (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) -0.0793 0.4798 -1.0044 -0.0851 0.8542 NA 333
#> det.cov.1.1 -0.4418 0.6378 -1.7580 -0.4586 0.9681 NA 180
#>
#> Data source 2 Detection (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.8380 0.3874 0.1180 0.8148 1.6150 NA 146
#> det.cov.2.1 -0.1098 0.3492 -0.7982 -0.1386 0.5576 NA 250
#> det.cov.2.2 1.4554 0.5963 0.4480 1.3583 2.6556 NA 74
#>
#> Data source 3 Detection (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) -0.4562 0.4268 -1.4185 -0.4466 0.3153 NA 108
#> det.cov.3.1 1.1125 0.4421 0.3538 1.0642 2.0550 NA 96
#>
#> Data source 4 Detection (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.0318 0.4903 -0.9872 0.0682 0.9851 NA 200
#> det.cov.4.1 -0.2343 0.6006 -1.2466 -0.2916 1.1622 NA 777
#> det.cov.4.2 0.1741 0.4809 -0.7771 0.1819 1.1760 NA 200
#> det.cov.4.3 0.1143 0.6133 -1.0339 0.0837 1.3212 NA 133
#>
#> Spatial Covariance:
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> sigma.sq 2.7399 2.3878 0.6567 2.1141 9.8878 NA 11
#> phi 11.0102 6.8897 3.5824 7.5669 22.7934 NA 2