Function for Fitting Multi-Species Spatial Occupancy Models Using Polya-Gamma Latent Variables
spMsPGOcc.Rd
The function spMsPGOcc
fits multi-species spatial occupancy models using Polya-Gamma latent variables. Models can be fit using either a full Gaussian process or a Nearest Neighbor Gaussian Process for large data sets.
Usage
spMsPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, k.fold, k.fold.threads = 1, k.fold.seed,
k.fold.only = FALSE, ...)
Arguments
- occ.formula
a symbolic description of the model to be fit for the occurrence portion of the model using R's model syntax. Only right-hand side of formula is specified. See example below. Random intercepts are allowed using lme4 syntax (Bates et al. 2015).
- det.formula
a symbolic description of the model to be fit for the detection portion of the model using R's model syntax. Only right-hand side of formula is specified. See example below. Random intercepts are allowed using lme4 syntax (Bates et al. 2015).
- data
a list containing data necessary for model fitting. Valid tags are
y
,occ.covs
,det.covs
,coords
.y
is a three-dimensional array with first dimension equal to the number of species, second dimension equal to the number of sites, and third dimension equal to the maximum number of replicates at a given site.occ.covs
is a matrix or data frame containing the variables used in the occurrence portion of the model, with \(J\) rows for each column (variable).det.covs
is a list of variables included in the detection portion of the model. Each list element is a different detection covariate, which can be site-level or observational-level. Site-level covariates are specified as a vector of length \(J\) while observation-level covariates are specified as a matrix or data frame with the number of rows equal to \(J\) and number of columns equal to the maximum number of replicates at a given site.coords
is a \(J \times 2\) matrix of the observation coordinates. Note thatspOccupancy
assumes coordinates are specified in a projected coordinate system.- inits
a list with each tag corresponding to a parameter name. Valid tags are
alpha.comm
,beta.comm
,beta
,alpha
,tau.sq.beta
,tau.sq.alpha
,sigma.sq.psi
,sigma.sq.p
,z
,sigma.sq
,phi
,w
, andnu
.nu
is only specified ifcov.model = "matern"
,sigma.sq.psi
is only specified if there are random intercepts inocc.formula
, andsigma.sq.p
is only specified if there are random intercpets indet.formula
. The value portion of each tag is the parameter's initial value. Seepriors
description for definition of each parameter name. Additionally, the tagfix
can be set toTRUE
to fix the starting values across all chains. Iffix
is not specified (the default), starting values are varied randomly across chains.- priors
a list with each tag corresponding to a parameter name. Valid tags are
beta.comm.normal
,alpha.comm.normal
,tau.sq.beta.ig
,tau.sq.alpha.ig
,phi.unif
,sigma.sq.ig
,sigma.sq.unif
,nu.unif
,sigma.sq.psi
,sigma.sq.p
. Community-level occurrence (beta.comm
) and detection (alpha.comm
) regression coefficients are assumed to follow a normal distribution. The hyperparameters of the normal distribution are passed as a list of length two with the first and second elements corresponding to the mean and variance of the normal distribution, which are each specified as vectors of length equal to the number of coefficients to be estimated or of length one if priors are the same for all coefficients. If not specified, prior means are set to 0 and prior variances set to 2.73. Community-level variance parameters for occupancy (tau.sq.beta
) and detection (tau.sq.alpha
) are assumed to follow an inverse Gamma distribution. The hyperparameters of the inverse gamma distribution are passed as a list of length two with the first and second elements corresponding to the shape and scale parameters, which are each specified as vectors of length equal to the number of coefficients to be estimated or a single value if priors are the same for all parameters. If not specified, prior shape and scale parameters are set to 0.1. The species-specific spatial variance parameter,sigma.sq
, is assumed to follow an inverse-Gamma distribution or a uniform distribution (default is inverse-Gamma).sigma.sq
of all species can also be fixed at its initial value by setting the prior value to"fixed"
. The spatial decayphi
and smoothnessnu
parameters are assumed to follow Uniform distributions. The hyperparameters of the inverse-Gamma are passed as a list of length two, with the list elements being vectors of length N corresponding to the species-specific shape and scale parameters, respectively, or a single value if the same value is assigned for all species. The hyperparameters of the Uniform are also passed as a list with two elements, with both elements being vectors of length N corresponding to the lower and upper support, respectively, or as a single value if the same value is assigned for all species.sigma.sq.psi
andsigma.sq.p
are the random effect variances for any occurrence or detection random effects, respectively, and are assumed to follow an inverse Gamma distribution. The hyperparameters of the inverse-Gamma distribution are passed as a list of length two with first and second elements corresponding to the shape and scale parameters, respectively, which are each specified as vectors of length equal to the number of random intercepts or of length one if priors are the same for all random effect variances.- tuning
a list with each tag corresponding to a parameter name. Valid tags are
phi
andnu
. The value portion of each tag defines the initial variance of the adaptive sampler. We assume the initial variance of the adaptive sampler is the same for each species, although the adaptive sampler will adjust the tuning variances separately for each species. See Roberts and Rosenthal (2009) for details.- cov.model
a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model key words are:
"exponential"
,"matern"
,"spherical"
, and"gaussian"
.- NNGP
if
TRUE
, model is fit with an NNGP. IfFALSE
, a full Gaussian process is used. See Datta et al. (2016) and Finley et al. (2019) for more information.- n.neighbors
number of neighbors used in the NNGP. Only used if
NNGP = TRUE
. Datta et al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5 neighbors can be adequate for certain data sets, which can lead to even greater decreases in run time. We recommend starting with 15 neighbors (the default) and if additional gains in computation time are desired, subsequently compare the results with a smaller number of neighbors using WAIC or k-fold cross-validation.- search.type
a quoted keyword that specifies the type of nearest neighbor search algorithm. Supported method key words are:
"cb"
and"brute"
. The"cb"
should generally be much faster. If locations do not have identical coordinate values on the axis used for the nearest neighbor ordering then"cb"
and"brute"
should produce identical neighbor sets. However, if there are identical coordinate values on the axis used for nearest neighbor ordering, then"cb"
and"brute"
might produce different, but equally valid, neighbor sets, e.g., if data are on a grid.- n.batch
the number of MCMC batches in each chain to run for the Adaptive MCMC sampler. See Roberts and Rosenthal (2009) for details.
- batch.length
the length of each MCMC batch to run for the Adaptive MCMC sampler. See Roberts and Rosenthal (2009) for details.
- accept.rate
target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and Rosenthal (2009) for details.
- n.omp.threads
a positive integer indicating the number of threads to use for SMP parallel processing within chains. The package must be compiled for OpenMP support. For most Intel-based machines, we recommend setting
n.omp.threads
up to the number of hyperthreaded cores. Note,n.omp.threads
> 1 might not work on some systems.- verbose
if
TRUE
, messages about data preparation, model specification, and progress of the sampler are printed to the screen. Otherwise, no messages are printed.- n.report
the interval to report Metropolis sampler acceptance and MCMC progress. Note this is specified in terms of batches and not overall samples for spatial models.
- n.burn
the number of samples out of the total
n.samples
to discard as burn-in for each chain. By default, the first 10% of samples is discarded.- n.thin
the thinning interval for collection of MCMC samples. The thinning occurs after the
n.burn
samples are discarded. Default value is set to 1.- n.chains
the number of chains to run in sequence.
- k.fold
specifies the number of k folds for cross-validation. If not specified as an argument, then cross-validation is not performed and
k.fold.threads
andk.fold.seed
are ignored. In k-fold cross-validation, the data specified indata
is randomly partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsamples are used to fit the model and the remaining k samples are used for prediction. The cross-validation process is repeated k times (the folds). As a scoring rule, we use the model deviance as described in Hooten and Hobbs (2015). Cross-validation is performed after the full model is fit using all the data. Cross-validation results are reported in thek.fold.deviance
object in the return list.- k.fold.threads
number of threads to use for cross-validation. If
k.fold.threads > 1
parallel processing is accomplished using the foreach and doParallel packages. Ignored ifk.fold
is not specified.- k.fold.seed
seed used to split data set into
k.fold
parts for k-fold cross-validation. Ignored ifk.fold
is not specified.- k.fold.only
a logical value indicating whether to only perform cross-validation (
TRUE
) or perform cross-validation after fitting the full model (FALSE
). Default value isFALSE
.- ...
currently no additional arguments
Note
Some of the underlying code used for generating random numbers from the Polya-Gamma distribution is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.lib.utexas.edu/handle/2152/21842.
References
Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaussian process models for large geostatistical datasets. Journal of the American Statistical Association, doi:10.1080/01621459.2015.1044091 .
Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Efficient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational and Graphical Statistics, doi:10.1080/10618600.2018.1537924 .
Finley, A. O., Datta, A., and Banerjee, S. (2020). spNNGP R package for nearest neighbor Gaussian process models. arXiv preprint arXiv:2001.09111.
Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.
Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational and Graphical Statistics, 18(2):349-367.
Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01 .
Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. Ecological Monographs, 85(1), 3-28.
Author
Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu
Value
An object of class spMsPGOcc
that is a list comprised of:
- beta.comm.samples
a
coda
object of posterior samples for the community level occurrence regression coefficients.- alpha.comm.samples
a
coda
object of posterior samples for the community level detection regression coefficients.- tau.sq.beta.samples
a
coda
object of posterior samples for the occurrence community variance parameters.- tau.sq.alpha.samples
a
coda
object of posterior samples for the detection community variance parameters.- beta.samples
a
coda
object of posterior samples for the species level occurrence regression coefficients.- alpha.samples
a
coda
object of posterior samples for the species level detection regression coefficients.- theta.samples
a
coda
object of posterior samples for the species level covariance parameters.- z.samples
a three-dimensional array of posterior samples for the latent occurrence values for each species.
- psi.samples
a three-dimensional array of posterior samples for the latent occupancy probability values for each species.
- w.samples
a three-dimensional array of posterior samples for the latent spatial random effects for each species.
- sigma.sq.psi.samples
a
coda
object of posterior samples for variances of random intercepts included in the occurrence portion of the model. Only included if random intercepts are specified inocc.formula
.- sigma.sq.p.samples
a
coda
object of posterior samples for variances of random intercpets included in the detection portion of the model. Only included if random intercepts are specified indet.formula
.- alpha.star.samples
a
coda
object of posterior samples for the detection random effects. Only included if random intercepts are specified indet.formula
.- beta.star.samples
a
coda
object of posterior samples for the occurrence random effects. Only included if random intercepts are specified inocc.formula
.- like.samples
a three-dimensional array of posterior samples for the likelihood value associated with each site and species. Used for calculating WAIC.
- rhat
a list of Gelman-Rubin diagnostic values for some of the model parameters.
- ESS
a list of effective sample sizes for some of the model parameters.
- run.time
MCMC sampler execution time reported using
proc.time()
.- k.fold.deviance
vector of scoring rules (deviance) from k-fold cross-validation. A separate value is reported for each species. Only included if
k.fold
is specified in function call.
The return object will include additional objects used for
subsequent prediction and/or model fit evaluation. Note that detection probability
estimated values are not included in the model object, but can be extracted using fitted()
.
Examples
set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 7
J.y <- 7
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 5
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
phi <- runif(N, 3/1, 3/.4)
sigma.sq <- runif(N, 0.3, 3)
sp <- TRUE
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential')
# Number of batches
n.batch <- 30
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length
y <- dat$y
X <- dat$X
X.p <- dat$X.p
coords <- as.matrix(dat$coords)
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],
det.cov.2 = X.p[, , 3])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1),
sigma.sq.ig = list(a = 2, b = 2))
# Initial values
inits.list <- list(alpha.comm = 0,
beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
phi = 3 / .5,
sigma.sq = 2,
w = matrix(0, nrow = N, ncol = nrow(X)),
z = apply(y, c(1, 2), max, na.rm = TRUE))
# Tuning
tuning.list <- list(phi = 1)
# Note that this is just a test case and more iterations/chains may need to
# be run to ensure convergence.
out <- spMsPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
#> ----------------------------------------
#> Preparing to run the model
#> ----------------------------------------
#> ----------------------------------------
#> Building the neighbor list
#> ----------------------------------------
#> ----------------------------------------
#> Building the neighbors of neighbors list
#> ----------------------------------------
#> ----------------------------------------
#> Model description
#> ----------------------------------------
#> NNGP Multi-species Occupancy Model with Polya-Gamma latent
#> variable fit with 49 sites and 5 species.
#>
#> Samples per chain: 750 (30 batches of length 25)
#> Burn-in: 500
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 250
#>
#> Using the exponential spatial correlation model.
#>
#> Using 5 nearest neighbors.
#>
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#>
#> Adaptive Metropolis with target acceptance rate: 43.0
#> ----------------------------------------
#> Chain 1
#> ----------------------------------------
#> Sampling ...
#> Batch: 10 of 30, 33.33%
#> Species Parameter Acceptance Tuning
#> 1 phi 56.0 1.11628
#> 2 phi 88.0 1.11628
#> 3 phi 68.0 1.11628
#> 4 phi 64.0 1.09417
#> 5 phi 64.0 1.11628
#> -------------------------------------------------
#> Batch: 20 of 30, 66.67%
#> Species Parameter Acceptance Tuning
#> 1 phi 72.0 1.20925
#> 2 phi 68.0 1.23368
#> 3 phi 72.0 1.23368
#> 4 phi 68.0 1.20925
#> 5 phi 60.0 1.23368
#> -------------------------------------------------
#> Batch: 30 of 30, 100.00%
summary(out, level = 'both')
#>
#> Call:
#> spMsPGOcc(occ.formula = ~occ.cov, det.formula = ~det.cov.1 +
#> det.cov.2, data = data.list, inits = inits.list, priors = prior.list,
#> tuning = tuning.list, cov.model = "exponential", NNGP = TRUE,
#> n.neighbors = 5, search.type = "cb", n.batch = n.batch, batch.length = batch.length,
#> accept.rate = 0.43, n.omp.threads = 1, verbose = TRUE, n.report = 10,
#> n.burn = 500, n.thin = 1, n.chains = 1)
#>
#> Samples per Chain: 750
#> Burn-in: 500
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 250
#> Run Time (min): 0.0087
#>
#> ----------------------------------------
#> Community Level
#> ----------------------------------------
#> Occurrence Means (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) -0.5603 0.3459 -1.3230 -0.5522 0.0667 NA 132
#> occ.cov 0.2236 0.4675 -0.5884 0.1915 1.1159 NA 159
#>
#> Occurrence Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.5255 0.7204 0.0490 0.3262 2.504 NA 84
#> occ.cov 0.9119 1.0404 0.1136 0.5661 3.561 NA 151
#>
#> Detection Means (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.6923 0.4014 -0.1512 0.7097 1.3619 NA 191
#> det.cov.1 -0.1406 0.3732 -0.8184 -0.1407 0.5838 NA 250
#> det.cov.2 -0.7371 0.3899 -1.4805 -0.7458 0.0281 NA 198
#>
#> Detection Variances (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept) 0.5720 0.8625 0.0773 0.3117 3.1149 NA 94
#> det.cov.1 0.5636 1.0550 0.0669 0.3142 2.2950 NA 139
#> det.cov.2 0.7929 2.0518 0.0666 0.3680 3.6109 NA 207
#>
#> ----------------------------------------
#> Species Level
#> ----------------------------------------
#> Occurrence (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept)-sp1 -0.4986 0.3732 -1.4015 -0.4591 0.1607 NA 36
#> (Intercept)-sp2 0.0315 0.5399 -0.9897 0.0071 1.2356 NA 27
#> (Intercept)-sp3 -0.8632 0.4581 -1.8238 -0.8321 -0.1312 NA 70
#> (Intercept)-sp4 -0.5621 0.3875 -1.3699 -0.5510 0.1501 NA 76
#> (Intercept)-sp5 -0.9349 0.3737 -1.6936 -0.9412 -0.2332 NA 55
#> occ.cov-sp1 -0.3039 0.3692 -1.0844 -0.2975 0.4305 NA 85
#> occ.cov-sp2 0.3756 0.4800 -0.4693 0.3478 1.4301 NA 59
#> occ.cov-sp3 -0.3903 0.3892 -1.1544 -0.3885 0.3021 NA 109
#> occ.cov-sp4 0.8338 0.4191 0.0959 0.8414 1.7321 NA 82
#> occ.cov-sp5 0.6081 0.3673 -0.0874 0.6080 1.3166 NA 109
#>
#> Detection (logit scale):
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> (Intercept)-sp1 0.8192 0.2854 0.2383 0.8298 1.4426 NA 149
#> (Intercept)-sp2 1.3120 0.2794 0.7893 1.2950 1.8684 NA 108
#> (Intercept)-sp3 -0.0206 0.4127 -0.8751 -0.0249 0.6941 NA 81
#> (Intercept)-sp4 0.6477 0.2607 0.1112 0.6665 1.0804 NA 120
#> (Intercept)-sp5 0.8066 0.3430 0.2020 0.8024 1.5481 NA 119
#> det.cov.1-sp1 0.0348 0.2227 -0.4183 0.0354 0.4701 NA 250
#> det.cov.1-sp2 -0.4639 0.2622 -0.9770 -0.4623 0.0229 NA 86
#> det.cov.1-sp3 0.4585 0.3141 -0.1611 0.4626 1.0326 NA 85
#> det.cov.1-sp4 -0.5733 0.2999 -1.1670 -0.5452 -0.0396 NA 128
#> det.cov.1-sp5 -0.2566 0.3257 -0.8902 -0.2541 0.4113 NA 119
#> det.cov.2-sp1 -0.3335 0.2838 -0.8683 -0.3442 0.2468 NA 156
#> det.cov.2-sp2 -0.8214 0.2594 -1.3761 -0.8133 -0.3119 NA 113
#> det.cov.2-sp3 -1.6268 0.5070 -2.8275 -1.5573 -0.8664 NA 48
#> det.cov.2-sp4 -0.6323 0.2364 -1.1286 -0.6295 -0.1775 NA 139
#> det.cov.2-sp5 -0.5728 0.2866 -1.1826 -0.5772 -0.0280 NA 140
#>
#> Spatial Covariance:
#> Mean SD 2.5% 50% 97.5% Rhat ESS
#> sigma.sq-sp1 2.4237 2.3820 0.7931 1.4636 8.0265 NA 12
#> sigma.sq-sp2 8.8736 11.4231 0.5523 3.3895 37.9279 NA 4
#> sigma.sq-sp3 1.2398 0.7618 0.4545 1.0201 3.2219 NA 24
#> sigma.sq-sp4 2.2128 2.3557 0.4650 1.3911 10.1891 NA 10
#> sigma.sq-sp5 1.0453 0.6638 0.2436 0.9251 2.6913 NA 25
#> phi-sp1 13.7409 7.2005 4.4405 11.8798 27.6629 NA 17
#> phi-sp2 18.5615 6.1327 7.4803 18.2681 29.4330 NA 30
#> phi-sp3 19.7496 6.3174 7.1826 19.8693 29.2511 NA 28
#> phi-sp4 15.4098 6.5759 5.8415 14.2049 27.5318 NA 16
#> phi-sp5 12.6210 6.8492 3.5967 10.8899 26.3085 NA 21