Skip to contents

Function for updating a previously run spOccupancy or spAbundance model with additional MCMC iterations. This function is useful for situations where a model is run for a long time but convergence/adequate mixing of the MCMC chains is not reached. Instead of re-running the entire model again, this function allows you to pick up where you left off. This function is currently in development, and only currently works with the following spOccupancy and spAbundance model objects: msAbund, sfJSDM, lfJSDM. Note that cross-validation is not possible when updating the model.

Usage

updateMCMC(object, n.batch, n.samples, n.burn = 0, n.thin, 
           keep.orig = TRUE, verbose = TRUE, n.report = 100, 
           save.fitted = TRUE, ...)

Arguments

object

a spOccupancy or spAbundance model object. Currently supports objects of class msAbund and sfJSDM.

n.batch

the number of additional MCMC batches in each chain to run for the adaptive MCMC sampler. Only valid for model types fit with an adaptive MCMC sampler

n.samples

the number of posterior samples to collect in each chain. Only valid for model types that are run with a fully Gibbs sampler and have n.samples as an argument in the original model fitting function.

n.burn

the number of samples out of the total n.batch * batchlength to discard as burn-in for each chain from the updated samples. Note this argument does not discard samples from the previous model run, and rather only applies to the samples in the updated run of the model. Defaults to 0

n.thin

the thinning interval for collection of MCMC samples in the updated model run. The thinning occurs after the n.burn samples are discarded. Default value is set to 1.

keep.orig

A logical value indicating whether or not the samples from the original run of the model should be kept or discarded.

verbose

if TRUE, messages about data preparation, model specification, and progress of the sampler are printed to the screen. Otherwise, no messages are printed.

n.report

the interval to report Metropolis sampler acceptance and MCMC progress.

save.fitted

logical value indicating whether or not fitted values and likelihood values should be saved in the resulting model object. This is only relevant for models of class msAbund. If save.fitted = FALSE, the components y.rep.samples, mu.samples, and like.samples will not be included in the model object, and subsequent functions for calculating WAIC, fitted values, and posterior predictive checks will not work, although they all can be calculated manually if desired. Setting save.fitted = FALSE can be useful when working with very large data sets to minimize the amount of RAM needed when fitting and storing the model object in memory.

...

currently no additional arguments

Author

Jeffrey W. Doser doserjef@msu.edu,

Value

An object of the same class as the original model fit provided in the argument object. See the manual page for the original model type for complete details.

Examples

J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6)
# Detection
alpha.mean <- c(0)
tau.sq.alpha <- c(1)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
  beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
  alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
n.factors <- 3
phi <- rep(3 / .7, n.factors)
sigma.sq <- rep(2, n.factors)
nu <- rep(2, n.factors)

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
                psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
                phi = phi, nu = nu, cov.model = 'matern', factor.model = TRUE,
                n.factors = n.factors)
#> sigma.sq is specified but will be set to 1 for spatial latent factor model

pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx, , drop = FALSE])
# Prediction covariates
X.0 <- dat$X[pred.indx, , drop = FALSE]
coords.0 <- as.matrix(dat$coords[pred.indx, , drop = FALSE])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , drop = FALSE]

y <- apply(y, c(1, 2), max, na.rm = TRUE)
data.list <- list(y = y, coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
                   tau.sq.beta.ig = list(a = 0.1, b = 0.1),
                   nu.unif = list(0.5, 2.5))
# Starting values
inits.list <- list(beta.comm = 0,
                   beta = 0,
                   fix = TRUE,
                   tau.sq.beta = 1)
# Tuning
tuning.list <- list(phi = 1, nu = 0.25)

batch.length <- 25
n.batch <- 2
n.report <- 100
formula <- ~ 1

out <- sfJSDM(formula = formula,
              data = data.list,
              inits = inits.list,
              n.batch = n.batch,
              batch.length = batch.length,
              accept.rate = 0.43,
              priors = prior.list,
              cov.model = "matern",
              tuning = tuning.list,
              n.factors = 3,
              n.omp.threads = 1,
              verbose = TRUE,
              NNGP = TRUE,
              n.neighbors = 5,
              search.type = 'cb',
              n.report = 10,
              n.burn = 0,
              n.thin = 1,
              n.chains = 2)
#> ----------------------------------------
#> 	Preparing to run the model
#> ----------------------------------------
#> covariates (covs) not specified in data.
#> Assuming intercept only model.
#> No prior specified for phi.unif.
#> Setting uniform bounds based on the range of observed spatial coordinates.
#> phi is not specified in initial values.
#> Setting initial value to random values from the prior distribution
#> lambda is not specified in initial values.
#> Setting initial values of the lower triangle to 0
#> nu is not specified in initial values.
#> Setting initial values to random values from the prior distribution
#> w is not specified in initial values.
#> Setting initial value to 0
#> Fixing initial values across all chains
#> ----------------------------------------
#> 	Building the neighbor list
#> ----------------------------------------
#> ----------------------------------------
#> Building the neighbors of neighbors list
#> ----------------------------------------
#> ----------------------------------------
#> 	Model description
#> ----------------------------------------
#> Spatial Factor NNGP JSDM with Polya-Gamma latent
#> variable fit with 48 sites and 6 species.
#> 
#> Samples per chain: 50 (2 batches of length 25)
#> Burn-in: 0 
#> Thinning Rate: 1 
#> Number of Chains: 2 
#> Total Posterior Samples: 100 
#> 
#> Using the matern spatial correlation model.
#> 
#> Using 3 latent spatial factors.
#> Using 5 nearest neighbors.
#> 
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#> 
#> Adaptive Metropolis with target acceptance rate: 43.0
#> ----------------------------------------
#> 	Chain 1
#> ----------------------------------------
#> Sampling ... 
#> Batch: 2 of 2, 100.00%
#> ----------------------------------------
#> 	Chain 2
#> ----------------------------------------
#> Sampling ... 
#> Batch: 2 of 2, 100.00%
summary(out)
#> 
#> Call:
#> sfJSDM(formula = formula, data = data.list, inits = inits.list, 
#>     priors = prior.list, tuning = tuning.list, cov.model = "matern", 
#>     NNGP = TRUE, n.neighbors = 5, search.type = "cb", n.factors = 3, 
#>     n.batch = n.batch, batch.length = batch.length, accept.rate = 0.43, 
#>     n.omp.threads = 1, verbose = TRUE, n.report = 10, n.burn = 0, 
#>     n.thin = 1, n.chains = 2)
#> 
#> Samples per Chain: 50
#> Burn-in: 0
#> Thinning Rate: 1
#> Number of Chains: 2
#> Total Posterior Samples: 100
#> Run Time (min): 0.0043
#> 
#> ----------------------------------------
#> 	Community Level
#> ----------------------------------------
#> Means (logit scale): 
#>               Mean     SD    2.5%    50%  97.5%   Rhat ESS
#> (Intercept) 0.2322 0.2556 -0.2771 0.2453 0.6704 1.1063  30
#> 
#> Variances (logit scale): 
#>               Mean     SD   2.5%    50%  97.5%   Rhat ESS
#> (Intercept) 0.3482 0.3397 0.0589 0.2063 1.2993 1.3084  43
#> 
#> ----------------------------------------
#> 	Species Level
#> ----------------------------------------
#> Estimates (logit scale): 
#>                    Mean     SD    2.5%     50%  97.5%   Rhat ESS
#> (Intercept)-sp1  0.3622 0.3254 -0.2586  0.3328 1.0234 1.5419  23
#> (Intercept)-sp2  0.0555 0.3471 -0.6236  0.0471 0.6463 1.0451  41
#> (Intercept)-sp3  0.3972 0.3998 -0.2835  0.3856 1.1926 1.3783  22
#> (Intercept)-sp4 -0.2545 0.3477 -0.9843 -0.2749 0.3344 0.9963  32
#> (Intercept)-sp5  0.3955 0.3726 -0.2382  0.3961 1.1989 1.0224  21
#> (Intercept)-sp6  0.4831 0.3029 -0.0982  0.4817 1.0232 1.0899  40
#> 
#> ----------------------------------------
#> 	Spatial Covariance
#> ----------------------------------------
#>          Mean     SD    2.5%     50%   97.5%   Rhat ESS
#> phi-1 12.5684 3.1266  7.6594 11.5839 19.9881 1.2173  10
#> phi-2 11.3220 4.5255  2.9456 10.6578 18.4969 1.7669   9
#> phi-3 16.2968 2.7835 11.4508 16.1413 20.4122 1.8401   8
#> nu-1   1.5832 0.2628  1.1442  1.5479  2.0639 6.4558   2
#> nu-2   0.8560 0.1528  0.6664  0.8105  1.2290 3.5835   6
#> nu-3   1.8787 0.1380  1.6133  1.8818  2.0921 3.8551  10

# Update the initial model fit
out.new <- updateMCMC(out, n.batch = 1, keep.orig = TRUE, 
         verbose = TRUE, n.report = 1) 
#> ----------------------------------------
#> 	Preparing to run the model
#> ----------------------------------------
#> covariates (covs) not specified in data.
#> Assuming intercept only model.
#> No prior specified for phi.unif.
#> Setting uniform bounds based on the range of observed spatial coordinates.
#> ----------------------------------------
#> 	Building the neighbor list
#> ----------------------------------------
#> ----------------------------------------
#> Building the neighbors of neighbors list
#> ----------------------------------------
#> ----------------------------------------
#> 	Model description
#> ----------------------------------------
#> Spatial Factor NNGP JSDM with Polya-Gamma latent
#> variable fit with 48 sites and 6 species.
#> 
#> Samples per chain: 25 (1 batches of length 25)
#> Burn-in: 0 
#> Thinning Rate: 1 
#> Number of Chains: 1 
#> Total Posterior Samples: 25 
#> 
#> Using the matern spatial correlation model.
#> 
#> Using 3 latent spatial factors.
#> Using 5 nearest neighbors.
#> 
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#> 
#> Adaptive Metropolis with target acceptance rate: 43.0
#> ----------------------------------------
#> 	Chain 1
#> ----------------------------------------
#> Sampling ... 
#> Batch: 1 of 1, 100.00%
#> ----------------------------------------
#> 	Preparing to run the model
#> ----------------------------------------
#> covariates (covs) not specified in data.
#> Assuming intercept only model.
#> No prior specified for phi.unif.
#> Setting uniform bounds based on the range of observed spatial coordinates.
#> ----------------------------------------
#> 	Building the neighbor list
#> ----------------------------------------
#> ----------------------------------------
#> Building the neighbors of neighbors list
#> ----------------------------------------
#> ----------------------------------------
#> 	Model description
#> ----------------------------------------
#> Spatial Factor NNGP JSDM with Polya-Gamma latent
#> variable fit with 48 sites and 6 species.
#> 
#> Samples per chain: 25 (1 batches of length 25)
#> Burn-in: 0 
#> Thinning Rate: 1 
#> Number of Chains: 1 
#> Total Posterior Samples: 25 
#> 
#> Using the matern spatial correlation model.
#> 
#> Using 3 latent spatial factors.
#> Using 5 nearest neighbors.
#> 
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#> 
#> Adaptive Metropolis with target acceptance rate: 43.0
#> ----------------------------------------
#> 	Chain 1
#> ----------------------------------------
#> Sampling ... 
#> Batch: 1 of 1, 100.00%
summary(out.new)
#> 
#> Call:
#> sfJSDM(formula = formula, data = data.list, inits = inits.list, 
#>     priors = prior.list, tuning = tuning.list, cov.model = "matern", 
#>     NNGP = TRUE, n.neighbors = 5, search.type = "cb", n.factors = 3, 
#>     n.batch = n.batch, batch.length = batch.length, accept.rate = 0.43, 
#>     n.omp.threads = 1, verbose = TRUE, n.report = 10, n.burn = 0, 
#>     n.thin = 1, n.chains = 2)
#> 
#> Samples per Chain: 75
#> Burn-in: 0
#> Thinning Rate: 1
#> Number of Chains: 2
#> Total Posterior Samples: 150
#> Run Time (min): 0.0068
#> 
#> ----------------------------------------
#> 	Community Level
#> ----------------------------------------
#> Means (logit scale): 
#>               Mean    SD  2.5%    50%  97.5%   Rhat ESS
#> (Intercept) 0.2401 0.262 -0.29 0.2476 0.6886 1.3649  54
#> 
#> Variances (logit scale): 
#>               Mean     SD   2.5%    50%  97.5%   Rhat ESS
#> (Intercept) 0.3506 0.3568 0.0594 0.2343 1.2924 1.6777  50
#> 
#> ----------------------------------------
#> 	Species Level
#> ----------------------------------------
#> Estimates (logit scale): 
#>                    Mean     SD    2.5%     50%  97.5%   Rhat ESS
#> (Intercept)-sp1  0.3221 0.3554 -0.3099  0.3159 1.0233 2.3092  32
#> (Intercept)-sp2  0.1151 0.3677 -0.5017  0.0942 0.7948 1.1260  49
#> (Intercept)-sp3  0.4239 0.3744 -0.2423  0.4364 1.1843 1.6156  38
#> (Intercept)-sp4 -0.2585 0.3602 -1.0239 -0.2551 0.3480 1.0451  72
#> (Intercept)-sp5  0.4280 0.3457 -0.1491  0.4208 1.1378 1.0361  38
#> (Intercept)-sp6  0.4532 0.3227 -0.1227  0.4602 1.0081 1.4523  56
#> 
#> ----------------------------------------
#> 	Spatial Covariance
#> ----------------------------------------
#>          Mean     SD    2.5%     50%   97.5%   Rhat ESS
#> phi-1 11.4096 3.2402  6.3683 11.0621 18.6425 1.3188  16
#> phi-2 10.3523 5.1303  2.6140 10.3988 18.4381 3.2532   8
#> phi-3 16.2921 2.5379 11.5285 16.2769 20.2804 1.4989  15
#> nu-1   1.6034 0.2401  1.2044  1.5479  2.0638 7.1522   2
#> nu-2   0.8075 0.1516  0.6171  0.7851  1.2288 2.1567   5
#> nu-3   1.9362 0.1859  1.6263  1.9308  2.2593 4.0330   8