Global declines in tree populations have led to dramatic shifts in forest ecosystem composition, biodiversity, and functioning. These changes have consequences for both forest plant and wildlife communities, particularly when declining species are involved in coevolved mutualisms. Whitebark pine (Pinus albicaulis) is a declining keystone species in western North American high-elevation ecosystems and an obligate mutualist of Clark’s nutcracker (Nucifraga columbiana), an avian seed predator and disperser. By leveraging traditional point count surveys and passive acoustic monitoring, we investigated how stand characteristics of whitebark pine in a protected area (Glacier National Park, Montana, USA) influenced occupancy and vocal activity patterns in Clark’s nutcracker. Using Bayesian spatial occupancy models and generalized linear mixed models, we found that habitat use of Clark’s nutcracker was primarily supported by greater cone density and increasing diameter of live whitebark pine. Additionally, we demonstrated the value of performing parallel analyses with traditional point count surveys and passive acoustic monitoring to provide multiple lines of evidence for relationships between Clark’s nutcracker and whitebark pine forest characteristics. Our findings allow managers to gauge the whitebark pine conditions important for retaining high nutcracker visitation and prioritize management efforts in whitebark pine ecosystems with low nutcracker visitation.