Chapter 16 Solutions to Selected Practice Problems
5.3.2
ggplot(data = alc.dat, aes(x = alc.drinks, y = alc.weights)) +
geom_point(col = 'blue', size = 2, shape = "square") +
labs(x = "Number of Drinks",
y = "Weight")6.7.2
separate(data = data.birds, col = recordingInfo, sep = "-",
into = c("site", "year", "month", "day"))6.8.7
gm %>%
filter(country == 'Afghanistan') %>%
select(c("year", "lifeExp")) %>%
arrange(desc(lifeExp))6.8.11
iris %>%
mutate(s.p.ratio = Sepal.Length / Petal.Length) %>%
group_by(Species) %>%
summarize(mean.ratio = mean(s.p.ratio)) %>%
arrange(desc(mean.ratio))10.2.2
falsePositives <- rep(0, 40)
for (i in 1:length(falsePositives)) {
knn_Pima <- knn(Pima.tr[,c(2,5)], Pima.te[,c(2,5)], Pima.tr[,8], k = i, prob=TRUE)
falsePositives[i] <- table(knn_Pima, Pima.te[,8])[2, 1]
}
# Using graphics
plot(falsePositives, pch = 19, las = 1, xlab = "k", ylab = "# of False Positives")
# Using ggplot2
dat <- data.frame(k = 1:40, falsePositives)
ggplot(data = dat, aes(x = k, y = falsePositives)) +
geom_point() +
labs(y = "# of False Positives")