Skip to contents

The function predict collects posterior predictive samples for a set of new locations given an object of class `spMsPGOcc`. Prediction is possible for both the latent occupancy state as well as detection.

Usage

# S3 method for spMsPGOcc
predict(object, X.0, coords.0, n.omp.threads = 1, verbose = TRUE, 
                            n.report = 100, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object

an object of class spMsPGOcc

X.0

the design matrix of covariates at the prediction locations. This should include a column of 1s for the intercept if an intercept is included in the model. If random effects are included in the occupancy (or detection if type = 'detection') portion of the model, the levels of the random effects at the new locations should be included as a column in the design matrix. The ordering of the levels should match the ordering used to fit the data in spMsPGOcc. Columns should correspond to the order of how covariates were specified in the corresponding formula argument of spMsPGOcc. Column names of the random effects must match the name of the random effects, if specified in the corresponding formula argument of spMsPGOcc.

coords.0

the spatial coordinates corresponding to X.0. Note that spOccupancy assumes coordinates are specified in a projected coordinate system.

n.omp.threads

a positive integer indicating the number of threads to use for SMP parallel processing. The package must be compiled for OpenMP support. For most Intel-based machines, we recommend setting n.omp.threads up to the number of hyperthreaded cores. Note, n.omp.threads > 1 might not work on some systems.

verbose

if TRUE, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.

n.report

the interval to report sampling progress.

ignore.RE

a logical value indicating whether to include unstructured random effects for prediction. If TRUE, unstructured random effects will be ignored and prediction will only use the fixed effects and the spatial random effects. If FALSE, random effects will be included in the prediction for both observed and unobserved levels of the unstructured random effects.

type

a quoted keyword indicating what type of prediction to produce. Valid keywords are 'occupancy' to predict latent occupancy probability and latent occupancy values (this is the default), or 'detection' to predict detection probability given new values of detection covariates.

...

currently no additional arguments

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are supported for prediction. For sampled levels, the posterior distribution for the random intercept corresponding to that level of the random effect will be used in the prediction. For non-sampled levels, random values are drawn from a normal distribution using the posterior samples of the random effect variance, which results in fully propagated uncertainty in predictions with models that incorporate random effects.

Author

Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu

Value

An list object of class predict.spMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples

a three-dimensional array of posterior predictive samples for the latent occurrence probability values.

z.0.samples

a three-dimensional array of posterior predictive samples for the latent occurrence values.

w.0.samples

a three-dimensional array of posterior predictive samples for the latent spatial random effects.

run.time

execution time reported using proc.time().

When type = 'detection', the list consists of:

p.0.samples

a three-dimensional array of posterior predictive samples for the detection probability values.

run.time

execution time reported using proc.time().

The return object will include additional objects used for standard extractor functions.

Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
J.x <- 7
J.y <- 7
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 5
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
  beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
  alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
phi <- runif(N, 3/1, 3/.4)
sigma.sq <- runif(N, 0.3, 3)
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
    phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential')

# Number of batches
n.batch <- 30
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length

# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Coordinates
coords <- as.matrix(dat$coords[-pred.indx, ])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
# Prediction values
X.0 <- dat$X[pred.indx, ]
coords.0 <- as.matrix(dat$coords[pred.indx, ])
psi.0 <- dat$psi[, pred.indx]

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2], 
     det.cov.2 = X.p[, , 3]
     )
data.list <- list(y = y, 
      occ.covs = occ.covs,
      det.covs = det.covs, 
      coords = coords)

# Priors 
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72), 
       alpha.comm.normal = list(mean = 0, var = 2.72), 
       tau.sq.beta.ig = list(a = 0.1, b = 0.1), 
       tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
       phi.unif = list(a = 3/1, b = 3/.1), 
       sigma.sq.ig = list(a = 2, b = 2)) 
# Starting values
inits.list <- list(alpha.comm = 0, 
          beta.comm = 0, 
          beta = 0, 
          alpha = 0,
          tau.sq.beta = 1, 
          tau.sq.alpha = 1, 
          phi = 3 / .5, 
          sigma.sq = 2,
          w = matrix(0, nrow = N, ncol = nrow(X)),
          z = apply(y, c(1, 2), max, na.rm = TRUE))
# Tuning
tuning.list <- list(phi = 1) 
# Note that this is just a test case and more iterations/chains may need to 
# be run to ensure convergence.
out <- spMsPGOcc(occ.formula = ~ occ.cov, 
                 det.formula = ~ det.cov.1 + det.cov.2, 
                 data = data.list,
                 inits = inits.list, 
                 n.batch = n.batch, 
                 batch.length = batch.length, 
                 accept.rate = 0.43, 
                 priors = prior.list, 
                 cov.model = "exponential", 
                 tuning = tuning.list, 
                 n.omp.threads = 1, 
                 verbose = TRUE, 
                 NNGP = TRUE, 
                 n.neighbors = 5, 
                 search.type = 'cb', 
                 n.report = 10, 
                 n.burn = 500, 
                 n.thin = 1)
#> ----------------------------------------
#> 	Preparing to run the model
#> ----------------------------------------
#> ----------------------------------------
#> 	Building the neighbor list
#> ----------------------------------------
#> ----------------------------------------
#> Building the neighbors of neighbors list
#> ----------------------------------------
#> ----------------------------------------
#> 	Model description
#> ----------------------------------------
#> NNGP Multi-species Occupancy Model with Polya-Gamma latent
#> variable fit with 37 sites and 5 species.
#> 
#> Samples per chain: 750 (30 batches of length 25)
#> Burn-in: 500 
#> Thinning Rate: 1 
#> Number of Chains: 1 
#> Total Posterior Samples: 250 
#> 
#> Using the exponential spatial correlation model.
#> 
#> Using 5 nearest neighbors.
#> 
#> Source compiled with OpenMP support and model fit using 1 thread(s).
#> 
#> Adaptive Metropolis with target acceptance rate: 43.0
#> ----------------------------------------
#> 	Chain 1
#> ----------------------------------------
#> Sampling ... 
#> Batch: 10 of 30, 33.33%
#> 	Species		Parameter	Acceptance	Tuning
#> 	1		phi		68.0		1.11628
#> 	2		phi		52.0		1.11628
#> 	3		phi		72.0		1.11628
#> 	4		phi		76.0		1.11628
#> 	5		phi		64.0		1.11628
#> -------------------------------------------------
#> Batch: 20 of 30, 66.67%
#> 	Species		Parameter	Acceptance	Tuning
#> 	1		phi		64.0		1.23368
#> 	2		phi		72.0		1.23368
#> 	3		phi		76.0		1.23368
#> 	4		phi		64.0		1.23368
#> 	5		phi		68.0		1.23368
#> -------------------------------------------------
#> Batch: 30 of 30, 100.00%

summary(out, level = 'both')
#> 
#> Call:
#> spMsPGOcc(occ.formula = ~occ.cov, det.formula = ~det.cov.1 + 
#>     det.cov.2, data = data.list, inits = inits.list, priors = prior.list, 
#>     tuning = tuning.list, cov.model = "exponential", NNGP = TRUE, 
#>     n.neighbors = 5, search.type = "cb", n.batch = n.batch, batch.length = batch.length, 
#>     accept.rate = 0.43, n.omp.threads = 1, verbose = TRUE, n.report = 10, 
#>     n.burn = 500, n.thin = 1)
#> 
#> Samples per Chain: 750
#> Burn-in: 500
#> Thinning Rate: 1
#> Number of Chains: 1
#> Total Posterior Samples: 250
#> Run Time (min): 0.007
#> 
#> ----------------------------------------
#> 	Community Level
#> ----------------------------------------
#> Occurrence Means (logit scale): 
#>                Mean     SD    2.5%     50%  97.5% Rhat ESS
#> (Intercept) -0.4622 0.4427 -1.3665 -0.5057 0.2814   NA 122
#> occ.cov      0.3886 0.4287 -0.5755  0.3795 1.1836   NA  77
#> 
#> Occurrence Variances (logit scale): 
#>               Mean     SD   2.5%    50%  97.5% Rhat ESS
#> (Intercept) 0.6554 1.1049 0.0469 0.3317 5.5581   NA  64
#> occ.cov     0.7827 1.1321 0.0412 0.4286 3.7263   NA  88
#> 
#> Detection Means (logit scale): 
#>                Mean     SD    2.5%     50%  97.5% Rhat ESS
#> (Intercept)  0.7224 0.4123 -0.0629  0.7256 1.5427   NA  86
#> det.cov.1   -0.1478 0.5247 -0.9811 -0.1644 0.8437   NA 169
#> det.cov.2   -0.6750 0.5438 -1.6651 -0.6442 0.4714   NA 250
#> 
#> Detection Variances (logit scale): 
#>               Mean     SD   2.5%    50%  97.5% Rhat ESS
#> (Intercept) 0.6929 0.8467 0.0638 0.4020 3.2757   NA  36
#> det.cov.1   1.6185 3.0210 0.0945 0.8538 7.6464   NA 114
#> det.cov.2   1.6717 2.4921 0.1242 1.0001 6.9050   NA 162
#> 
#> ----------------------------------------
#> 	Species Level
#> ----------------------------------------
#> Occurrence (logit scale): 
#>                    Mean     SD    2.5%     50%  97.5% Rhat ESS
#> (Intercept)-sp1 -0.3694 0.4666 -1.3527 -0.4014 0.5434   NA  64
#> (Intercept)-sp2  0.1296 0.3753 -0.5420  0.1129 0.8152   NA 101
#> (Intercept)-sp3 -0.7903 0.5282 -2.0046 -0.7108 0.1381   NA  50
#> (Intercept)-sp4 -0.7650 0.4484 -1.7566 -0.7360 0.0782   NA  80
#> (Intercept)-sp5 -0.6734 0.4096 -1.5578 -0.6384 0.0518   NA 101
#> occ.cov-sp1     -0.0413 0.4951 -1.1310  0.0115 0.8520   NA  73
#> occ.cov-sp2      0.5945 0.4041 -0.2357  0.5854 1.4573   NA 101
#> occ.cov-sp3     -0.1653 0.5898 -1.3566 -0.1781 0.9947   NA  46
#> occ.cov-sp4      0.7727 0.5037 -0.0445  0.7268 1.9130   NA  72
#> occ.cov-sp5      0.8413 0.4658  0.0764  0.7759 1.8499   NA  81
#> 
#> Detection (logit scale): 
#>                    Mean     SD    2.5%     50%   97.5% Rhat ESS
#> (Intercept)-sp1  0.8876 0.3579  0.1956  0.8738  1.6152   NA  66
#> (Intercept)-sp2  1.3182 0.3622  0.7439  1.2933  2.0585   NA  43
#> (Intercept)-sp3  0.0269 0.6466 -1.4559  0.0952  1.1080   NA  28
#> (Intercept)-sp4  0.5653 0.3957 -0.2553  0.5861  1.2771   NA 166
#> (Intercept)-sp5  0.9058 0.3408  0.2357  0.8734  1.5581   NA  74
#> det.cov.1-sp1   -0.0293 0.2950 -0.5720 -0.0299  0.5518   NA 191
#> det.cov.1-sp2   -0.5497 0.3369 -1.2268 -0.5430  0.1430   NA  81
#> det.cov.1-sp3    1.0452 0.5574  0.1501  1.0092  2.3902   NA  49
#> det.cov.1-sp4   -1.0507 0.5133 -2.0604 -1.0211 -0.2111   NA  79
#> det.cov.1-sp5   -0.2745 0.3472 -1.0018 -0.2907  0.3592   NA 131
#> det.cov.2-sp1   -0.0504 0.3465 -0.6895 -0.0429  0.6142   NA 157
#> det.cov.2-sp2   -0.7805 0.3400 -1.4132 -0.7845 -0.1564   NA 115
#> det.cov.2-sp3   -2.1822 0.8084 -3.7653 -2.1169 -0.8894   NA  35
#> det.cov.2-sp4   -0.5711 0.3753 -1.3250 -0.5649  0.2372   NA 155
#> det.cov.2-sp5   -0.3943 0.3222 -0.9939 -0.3695  0.1664   NA 157
#> 
#> Spatial Covariance: 
#>                 Mean     SD   2.5%     50%   97.5% Rhat ESS
#> sigma.sq-sp1  3.5431 3.3181 0.5505  2.4245 12.3978   NA  10
#> sigma.sq-sp2  1.1110 0.8678 0.2592  0.8772  3.8971   NA  17
#> sigma.sq-sp3  2.7520 4.0084 0.3399  1.2134 15.3034   NA   7
#> sigma.sq-sp4  1.6086 1.2170 0.4699  1.1758  5.1140   NA  26
#> sigma.sq-sp5  1.4824 1.1701 0.3043  1.1938  4.5265   NA  44
#> phi-sp1      10.5326 6.6557 3.2131  7.9822 24.9551   NA  24
#> phi-sp2      17.7871 7.5907 4.3769 17.7565 29.7557   NA  24
#> phi-sp3      16.9545 6.9623 3.9358 17.3553 28.4260   NA  21
#> phi-sp4      18.5204 7.7661 4.1596 19.3904 29.6975   NA  14
#> phi-sp5      15.1225 7.8533 3.6180 14.0047 28.5701   NA  21

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, verbose = FALSE)